Recent progress on DNA block copolymer
- Corresponding author: Mou Quanbing, quanbingmou@sjtu.edu.cn Zhang Chuan, chuanzhang@sjtu.edu.cn 1 These authors contributed equally to this work
Citation: Pan Gaifang, Jin Xin, Mou Quanbing, Zhang Chuan. Recent progress on DNA block copolymer[J]. Chinese Chemical Letters, ;2017, 28(9): 1822-1828. doi: 10.1016/j.cclet.2017.08.022
K. Nagapudi, W.T. Brinkman, B.S. Thomas, et al., Biomaterials 26(2005) 4695-4706.
doi: 10.1016/j.biomaterials.2004.11.027
E.R. Wright, R.A. McMillan, A. Cooper, R.P. Apkarian, V.P. Conticello, Adv. Funct. Mater. 12(2002) 149-154.
doi: 10.1002/(ISSN)1616-3028
F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41(1990) 525-557.
doi: 10.1146/annurev.pc.41.100190.002521
E.K. Lin, A.P. Gast, Macromolecules 29(1996) 4432-4441.
doi: 10.1021/ma951871+
Y. Seo, T. Kang, H.J. Choi, J. Choi, J. Phys. Chem. C 111(2007) 5474-5480.
doi: 10.1021/jp068360h
R. Banerjee, D. Dhara, Langmuir 30(2014) 4137-4146.
doi: 10.1021/la500213h
A. Castro, P. Ferreira, P.M. Vilarinho, J. Phys. Chem. C 120(2016) 10961-10967.
doi: 10.1021/acs.jpcc.6b02581
O.E. Gould, H. Qiu, D.J. Lunn, et al., Nat. Commun. 6(2015) 10009.
doi: 10.1038/ncomms10009
C.K. Jeong, K.M. Baek, S. Niu, Nano Lett. 14(2014) 7031-7038.
doi: 10.1021/nl503402c
C. Shen, Y.H. Lee, Y.P. Lee, React. Funct. Polym. 108(2016) 94-102.
doi: 10.1016/j.reactfunctpolym.2016.06.007
F.E. Alemdaroglu, N.C. Alemdaroglu, P. Langguth, A. Herrmann, Macromol. Rapid Commun. 29(2008) 326-329.
doi: 10.1002/(ISSN)1521-3927
F.E. Alemdaroglu, N.C. Alemdaroglu, P. Langguth, A. Herrmann, Adv. Mater. 20(2008) 899-902.
doi: 10.1002/(ISSN)1521-4095
F.E. Alemdaroglu, J. Wang, M. Börsch, R. Berger, A. Herrmann, Angew. Chem. Int. Ed. 47(2008) 974-976.
doi: 10.1002/(ISSN)1521-3773
M.S. Ayaz, M. Kwak, F.E. Alemdaroglu, et al., Chem. Commun. 47(2011) 2243-2245.
doi: 10.1039/c0cc04746e
R.J. Banga, B. Meckes, S.P. Narayan, et al., J. Am. Chem. Soc. 139(2017) 4278-4281.
doi: 10.1021/jacs.6b13359
M.P. Chien, A.M. Rush, M.P. Thompson, N.C. Gianneschi, Angew. Chem. Int. Ed. 49(2010) 5076-5080.
doi: 10.1002/anie.v49:30
N. Cottenye, M.I. Syga, S. Nosov, et al., Chem. Commun. 48(2012) 2615-2617.
doi: 10.1039/c2cc17487a
P. Karimi, K.O. Peters, K. Bidad, P.T. Strickland, Eur. J. Epidemiol. 30(2015) 91-101.
doi: 10.1007/s10654-015-9988-6
C.J. Kim, X. Hu, S.J. Park, J. Am. Chem. Soc. 138(2016) 14941-14947.
doi: 10.1021/jacs.6b07985
M. Kwak, A. Herrmann, Chem. Soc. Rev. 40(2011) 5745-5755.
doi: 10.1039/c1cs15138j
H. Liu, Z. Zhu, H. Kang, et al., Chem. Eur. J. 16(2010) 3791-3797.
doi: 10.1002/chem.v16:12
Q. Luo, Z. Shi, Y. Zhang, et al., J. Am. Chem. Soc. 138(2016) 10157-10162.
doi: 10.1021/jacs.6b04076
E.D. Mentovich, K. Livanov, D.K. Prusty, M. Sowwan, S. Richter, J. Nanobiotechnol. 10(2012) 21.
doi: 10.1186/1477-3155-10-21
M. Sowwan, M. Faroun, E. Mentovich, et al., Macromol. Rapid Commun. 31(2010) 1242-1246.
doi: 10.1002/marc.v31:14
A. Tanaka, Y. Matsuo, Y. Hashimoto, K. Ijiro, Chem. Commun. (2008) 4270-4272.
K. Zhang, H. Miao, D. Chen, J. Am. Chem. Soc. 136(2014) 15933-15941.
doi: 10.1021/ja5099963
L. Zhang, A. Eisenberg, Science 268(1995) 1728-1731.
doi: 10.1126/science.268.5218.1728
N. Kanayama, H. Shibata, A. Kimura, et al., Biomacromolecules 10(2009) 805-813.
doi: 10.1021/bm801301b
K. Tanabe, T. Asada, S.I. Nishimoto, Biorg. Med. Chem. Lett. 22(2012) 7045-7047.
doi: 10.1016/j.bmcl.2012.09.090
Z. Li, Y. Zhang, P. Fullhart, C.A. Mirkin, Nano Lett. 4(2004) 1055-1058.
doi: 10.1021/nl049628o
R. Dahm, Dev. Biol. 278(2005) 274-288.
doi: 10.1016/j.ydbio.2004.11.028
N.C. Seeman, Nature 421(2003) 427-431.
doi: 10.1038/nature01406
X. Wu, C. Wu, C. Zhang, Chin. J. Polym. Sci. 35(2017) 1-24.
doi: 10.1007/s10118-017-1871-3
X. Wu, C. Wu, F. Ding, et al., Chin. Chem. Lett. 28(2017) 851-856.
doi: 10.1016/j.cclet.2017.01.012
J.Z. Shi, H.Y. Jia, D.S. Liu, Acta Polym. Sin. (2017) 135-142.
F. Zhang, F. Hong, H. Yan, Nat. Nanotechnol. 12(2017) 189-190.
Y. Ke, L.L. Ong, W.M. Shih, P. Yin, Science 338(2012) 1177-1183.
doi: 10.1126/science.1227268
P.W.K. Rothemund, Nature 440(2006) 297-302.
doi: 10.1038/nature04586
M. Lemaitre, B. Bayard, B. Lebleu, Proc. Nat. Acad. Sci. U. S. A. 84(1987) 648-652.
doi: 10.1073/pnas.84.3.648
A. Agarwal, R.C. Unfer, S.K. Mallapragada, Biomaterials 29(2008) 607-617.
doi: 10.1016/j.biomaterials.2007.10.010
C. Chen, R.A. Wylie, D. Klinger, L.A. Connal, Chem. Mater. 29(2017) 1918-1945.
doi: 10.1021/acs.chemmater.6b04700
M. Bikram, C.H. Ahn, S.Y. Chae, et al., Macromolecules 37(2004) 1903-1916.
doi: 10.1021/ma035650c
M. Kwak, A. Herrmann, Angew. Chem. Int. Ed. 49(2010) 8574-8587.
doi: 10.1002/anie.200906820
C. Zhang, L. Hao, C.M. Calabrese, et al., Small 11(2015) 5360-5368.
doi: 10.1002/smll.v11.40
F.E. Alemdaroglu, K. Ding, R. Berger, A. Herrmann, Angew. Chem. Int. Ed. 45(2006) 4206-4210.
doi: 10.1002/(ISSN)1521-3773
M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, K. Kataoka, J. Am. Chem. Soc. 127(2005) 1624-1625.
doi: 10.1021/ja044941d
T. Schnitzler, A. Herrmann, Acc. Chem. Res. 45(2012) 1419-1430.
doi: 10.1021/ar200211a
A. Hernandez-Garcia, N.A. Estrich, M.W.T. Werten, et al., ACS Nano 11(2017) 144-152.
doi: 10.1021/acsnano.6b05938
Y. Shao, H. Jia, T. Cao, D. Liu, Acc. Chem. Res. 50(2017) 659-668.
doi: 10.1021/acs.accounts.6b00524
Y. Vyborna, M. Vybornyi, R. Häner, Bioconj. Chem. 27(2016) 2755-2761.
doi: 10.1021/acs.bioconjchem.6b00517
H. Yoshida, Y. Goto, R. Akahori, et al., Nanoscale 8(2016) 18270-18276.
doi: 10.1039/C6NR06575A
H. Yu, D.T. Alexander, U. Aschauer, R. Häner, Angew. Chem. Int. Ed. 129(2017) 5122-5126.
doi: 10.1002/ange.201701342
L. An, L. Liu, S. Wang, Biomacromolecules 10(2008) 454-457.
M. Oishi, T. Hayama, Y. Akiyama, et al., Biomacromolecules 6(2005) 2449-2454.
doi: 10.1021/bm050370l
C. Li, P. Chen, Y. Shao, et al., Small 11(2015) 1138-1143.
doi: 10.1002/smll.v11.9-10
K. Lee, L.K. Povlich, J. Kim, Adv. Funct. Mater. 17(2007) 2580-2587.
doi: 10.1002/(ISSN)1616-3028
Y.G. Takei, T. Aoki, K. Sanui, et al., Bioconj. Chem. 4(1993) 42-46.
doi: 10.1021/bc00019a006
P.M. Gramlich, C.T. Wirges, A. Manetto, T. Carell, Angew. Chem. Int. Ed. 47(2008) 8350-8358.
doi: 10.1002/anie.v47:44
K. Isoda, N. Kanayama, D. Miyamoto, T. Takarada, M. Maeda, React. Funct. Polym. 71(2011) 367-371.
doi: 10.1016/j.reactfunctpolym.2010.11.020
K. Liu, L. Zheng, Q. Liu, et al., J. Am. Chem. Soc. 136(2014) 14255-14262.
doi: 10.1021/ja5080486
K.J. Watson, S.J. Park, J.H. Im, S.T. Nguyen, C.A. Mirkin, J. Am. Chem. Soc. 123(2001) 5592-5593.
doi: 10.1021/ja0156845
C.J. Yang, M. Pinto, K. Schanze, W. Tan, Angew. Chem. Int. Ed. 44(2005) 2572-2576.
doi: 10.1002/(ISSN)1521-3773
X. Pan, S. Lathwal, S. Mack, et al., Angew. Chem. Int. Ed. 56(2017) 2740-2743.
doi: 10.1002/anie.v56.10
F.E. Alemdaroglu, W. Zhuang, L. Zöphel, et al., Nano Lett. 9(2009) 3658-3662.
doi: 10.1021/nl901899t
K. Ding, F.E. Alemdaroglu, M. Börsch, R. Berger, A. Herrmann, Angew. Chem. Int. Ed. 46(2007) 1172-1175.
doi: 10.1002/(ISSN)1521-3773
A.C. Kamps, M.H.M. Cativo, X.J. Chen, S.J. Park, Macromolecules 47(2014) 3720-3726.
doi: 10.1021/ma500509u
Y. Vyborna, M. Vybornyi, A.V. Rudnev, R. Häner, Angew. Chem. Int. Ed. 54(2015) 7934-7938.
doi: 10.1002/anie.201502066
A. Hernandez-Garcia, M.W. Werten, M.C. Stuart, F.A. de Wolf, R. de Vries, Small 8(2012) 3491-3501.
doi: 10.1002/smll.v8.22
D. McIlroy, B. Barteau, J. Cany, et al., Mol. Ther. 17(2009) 1473-1481.
doi: 10.1038/mt.2009.84
C.K. McLaughlin, G.D. Hamblin, K.D. Hänni, et al., J. Am. Chem. Soc. 134(2012) 4280-4286.
doi: 10.1021/ja210313p
C.J. Serpell, T.G. Edwardson, P. Chidchob, K.M. Carneiro, H.F. Sleiman, J. Am. Chem. Soc. 136(2014) 15767-15774.
doi: 10.1021/ja509192n
T.R. Wilks, J. Bath, J.W. de Vries, et al., ACS Nano 7(2013) 8561-8572.
doi: 10.1021/nn402642a
A.M. Rush, M.P. Thompson, E.T. Tatro, N.C. Gianneschi, ACS Nano 7(2013) 1379-1387.
doi: 10.1021/nn305030g
C.J. Leumann, Biorg. Med. Chem. 10(2002) 841-854.
doi: 10.1016/S0968-0896(01)00348-0
A. Eschenmoser, CHIMIA Int. J. Chem. 59(2005) 836-850.
doi: 10.2533/000942905777675552
C. Schatz, S. Lecommandoux, Macromol. Rapid Commun. 31(2010) 1664-1684.
doi: 10.1002/marc.v31:19
F.E. Alemdaroglu, A. Herrmann, Org. Biomol. Chem. 5(2007) 1311-1320.
doi: 10.1039/B617941J
X. Tan, B.B. Li, X. Lu, et al., J. Am. Chem. Soc. 137(2015) 6112-6115.
doi: 10.1021/jacs.5b00795
A. Rodríguez-Pulido, A.I. Kondrachuk, D.K. Prusty, et al., Angew. Chem. Int. Ed. 52(2013) 1008-1012.
doi: 10.1002/anie.201206783
F. Huang, M. You, T. Chen, et al., Chem. Commun. 50(2014) 3103-3105.
doi: 10.1039/c3cc49003c
C. Li, A. Faulkner-Jones, A.R. Dun, et al., Angew. Chem. Int. Ed. 54(2015) 3957-3961.
doi: 10.1002/anie.201411383
X. Xiong, C. Wu, C. Zhou, et al., Macromol. Rapid Commun. 34(2013) 1271-1283.
doi: 10.1002/marc.v34.16
M. Kwak, J. Gao, D.K. Prusty, et al., Angew. Chem. Int. Ed. 50(2011) 3206-3210.
doi: 10.1002/anie.201007098
J.H. Kim, J.H. Smit, D.K. Prusty, et al., J. Nanosci. Nanotechnol. 17(2017) 5175-5180.
doi: 10.1166/jnn.2017.13796
H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Control. Release 65(2000) 271-284.
doi: 10.1016/S0168-3659(99)00248-5
P.K. Dutta, R. Varghese, J. Nangreave, et al., J. Am. Chem. Soc.133(2011) 11985-11993.
doi: 10.1021/ja1115138
C. Holzhauser, M.M. Rubner, H.A. Wagenknecht, Photochem. Photobiol. Sci. 12(2013) 722-724.
doi: 10.1039/c2pp25366f
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813