Citation: Chai Yong-Hai, Feng Ying-Le, Wu Jing-Jing, Deng Chu-Qiao, Liu Ai-Yun, Zhang Qi. Recyclable benzyl-type fluorous tags: Preparation and application in oligosaccharide synthesis[J]. Chinese Chemical Letters, ;2017, 28(8): 1693-1700. doi: 10.1016/j.cclet.2017.06.020 shu

Recyclable benzyl-type fluorous tags: Preparation and application in oligosaccharide synthesis

  • Corresponding author: Chai Yong-Hai, ychai@snnu.edu.cn Zhang Qi, qiqizhang@snnu.edu.cn
  • *Corresponding authors at: School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China.
  • Received Date: 8 May 2017
    Revised Date: 29 May 2017
    Accepted Date: 16 June 2017
    Available Online: 19 August 2017

Figures(6)

  • We herein described the design, synthesis and application of two recyclable benzyl-type fluorous tags with double fluorous chains. The benzyl-type fluorous tags were prepared in 3 steps from a commercially available fluorous alcohol. The glycosylation of the benzyl-type tags with imidate donors proceeded smoothly to provide the corresponding fluorous-tagged carbohydrates in good to excellent yields, which were readily purified by fluorous solid-phase extraction (FSPE). Efficient removal of the tags from tagtethered carbohydrates were conducted under the common catalytic hydrogenation condition and the initial benzyl-type fluorous tags could be regenerated via a 2-step simple procedure in 69%-93% yields. The utility of the new benzyl-fluorous tag was demonstrated via the FSPE-assisted synthesis of oligosaccharides Gb3.
  • 加载中
    1. [1]

      (a) C. R. Bertozzi, L. L. Kiessling, Chemical glycobiology, Science 291(2001) 2357-2364;
      (b) P. Sears, C. H. Wong, Toward automated synthesis of oligosaccharides and glycoproteins, Science 291(2001) 2344-2350;
      (c) P. H. Seeberger, Exploring life's sweet spot, Nature 437(2005) 1239;
      (d) P. H. Seeberger, Chemical glycobiology: why now? Nat. Chem. Biol. 5(2009) 368-372;
      (e) L. X. Wang, B. G. Davis, Realizing the promise of chemical glycobiology, Chem. Sci. 4(2001) 3381-3394.

    2. [2]

      (a) Z. Zhang, I. R. Ollmann, X. S. Ye, et al. , Programmable one-potoligosaccharide synthesis, J. Am. Chem. Soc 121(1999) 734-753;
      (b) X. Huang, L. Huang, H. Wang, X. S. Ye, Iterative one-pot synthesis of oligosaccharides, Angew. Chem. Int. Ed. 43(2004) 5221-52244;
      (c) O. Kanie, Y. Ito, T. Ogawa, Orthogonal glycosylation strategy in oligosaccharide synthesis, J. Am. Chem. Soc. 116(1994) 12073-12074;
      (d) C. S. Bennett, Principles of modern solid-phase oligosaccharide synthesis, Org. Biomol. Chem. 12(2014) 1686-1698;
      (e) M. C. Galan, R. A. Jones, A. T. Tran, Recent developments of ionic liquids in oligosaccharide synthesis: the sweet side of ionic liquids, Carbohydr. Res. 375(2013) 35-46;
      (f) T. Nokami, R. Hayashi, Y. Saigusa, et al. , Automated solution-phase synthesis of oligosaccharides [1_TD$DIF]via iterative electrochemical assembly of thioglycosides, Org. Lett. 15(2013) 4520-4523;
      (g) J. Bauer, J. Rademann, Hydrophobically assisted switching phase synthesis: the flexible combination of solid-phase and solution-phase reactions employed for oligosaccharide preparation, J. Am. Chem. Soc. 127(2005) 7296-7297;
      (h) K. Goto, M. Mizuno, Application of fluorous chemistry for oligosaccharide synthesis, Trends Glycosci. Glycotechnol. 25(2013) 203-213 and references cited therein.

    3. [3]

      Horvath I.T., Rabai J.. Facile catalyst separationwithout water:fluorousbiphase hydroformylation of olefins[J]. Science, 1994,266:72-75. doi: 10.1126/science.266.5182.72

    4. [4]

      (a) W. Zhang, Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides, Curr. Opin. Drug Discov. Dev. 7(2004) 784-797;
      (b) W. Zhang, D. P. Curran, Synthetic applications of fluorous solid-phase extraction (F-SPE), Tetrahedron 62(2006) 11837-11865.

    5. [5]

      (a) R. Roychoudhury, N. L. B. Pohl, Synthesis of fluorous photolabile aldehyde and carbamate and alkyl carbamate protecting groups for carbohydrateassociated amines, Org. Lett. 16(2014) 1156-1159;
      (b) S. L. Tang, N. L. B. Pohl, Automated solution-phase synthesis of β-1, 4-mannuronate and β-1, 4-mannan, Org. Lett. 17(2015) 2642-2645;
      (c) W. Huang, Q. Gao, G. J. Boons, Assembly of a complex branched oligosaccharide by combining fluorous-supported synthesis and stereoselective glycosylations using anomeric sulfonium ions, Chem. Eur. J. 21(2015) 12920-12926;
      (d) K. Fukuda, M. Tojino, K. Goto, et al. , A recyclable heavy fluorous tag carrying an allyl alcohol pendant group: design and evaluation toward applications in synthetic carbohydrate chemistry, Carbohydr. Res. 407(2015) 122-130;
      (e) C. Cai, D. M. Dickinson, L. Li, et al. , Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides, Org. Lett. 16(2014) 2240-2243;
      (f) S. L. Tang, N. L. B. Pohl, Automated fluorous-assisted solution-phase synthesis of β-1, 2-, 1, 3-, and 1, 6-mannan oligomers, Carbohydr. Res. 430(2016) 8-15;
      (g) S. Bhaduri, N. L. B. Pohl, Fluorous-tag assisted syntheses of sulfated keratan sulfate oligosaccharide fragments, Org. Lett. 18(2016) 1414-1417.

    6. [6]

      (a) L. Manzoni, R. Castelli, Froc: A new fluorous protective group for peptide and oligosaccharide synthesis, Org, Lett. 8(2006) 955-957;
      (b) G. Park, K. S. Ko, A. Zakharova, N. L. Pohl, Mono-vs. di-fluorous-tagged glucosamines for iterative oligosaccharide synthesis, J. Fluorine Chem. 129(2008) 978-982.

    7. [7]

      (a) L. Manzoni, Rapid synthesis of oligosaccharides using an anomeric fluorous silyl protecting group, Chem. Commun. (2003) 2930-2931;
      (b) F. Zhang, W. Zhang, Y. Zhang, D. P. Curran, G. Liu, Synthesis and applications of a light-fluorous glycosyl donor, J. Org. Chem. 74(2009) 2594-2597.

    8. [8]

      Kojima M., Nakamura Y., Takeuchi S.. A practical fluorous benzylidene acetal protecting group for a quick synthesis of disaccharides[J]. Tetrahedron Lett., 2007,48:4431-4436. doi: 10.1016/j.tetlet.2007.04.106

    9. [9]

      (a) H. Tanaka, Y. Tanimoto, T. Kawai, T. Takahashi, A fluorous-assisted synthesis of oligosaccharides using a phenyl ether linker as a safety-catch linker, Tetrahedron 67(2011) 10011-10016;
      (b) C. Zong, A. Venot, O. Dhamale, G. J. Boons, Fluorous supported modular synthesis of heparan sulfate oligosaccharides, Org. Lett. 15(2013) 342-345;
      (c) B. Yang, Y. Jing, X. Huang, Fluorous-assisted one-pot oligosaccharide synthesis, Eur. J. Org. Chem. (2010) 1290-1298;
      (d) Y. Jing, X. Huang, Fluorous thiols in oligosaccharide synthesis, Tetrahedron Lett. 45(2004) 4615-4618;
      (e) R. Roychoudhury, N. L. B. Pohl, Light Fluorous-Tag-Assisted Synthesis of Oligosaccharides, in: D. B. Werz, S. Vidal (Eds. ), Mod. Synth. Methods Carbohydr. Chem. , Wiley-VCH, Weinheim, 2014, pp. 221-239 and references cited therein.

    10. [10]

      Miura T., Goto K., Hosaka D., Inazu T.. Oligosaccharide synthesis on a fluorous support[J]. Angew. Chem. Int. Ed., 2003,42:2047-2051. doi: 10.1002/anie.200250531

    11. [11]

      (a) B. Boutevin, B. Youssef, S. Boileau, A. M. Garnault, Synthese d'ethers et de thioethers allyliques fluores par catalyse par transfert de phase, J. Fluorine Chem. 35(1987) 399-410;
      (b) S. Malfait, S. Gérard, R. Plantier-Royon, G. Mignani, C. Portella, Synthesis of bi-and tetracatenar highly fluorinated compounds for grafting on silicone materials, J. Fluorine Chem. 132(2011) 760-766;
      (c) W. J. Huang, C. Y. Jin, D. K. Derzon, et al. , Synthesis of ether-linked fluorocarbon surfactants and their aggregational properties in organic solvents, J. Colloid Interface Sci 272(2004) 457-464.

    12. [12]

      Mizuno M., Kitazawa S., Goto K.. p-Alkoxyphenyl-type heavy fluorous tag for the preparation of carbohydrate units[J]. J. Fluorine Chem., 2008,129:955-960. doi: 10.1016/j.jfluchem.2008.06.013

    13. [13]

      Nicolaou K.C., Sarlah D., Wu T.R., Zhan W.. Total synthesis of hirsutellone B[J]. Angew. Chem. Int. Ed., 2009,48:6870-6874. doi: 10.1002/anie.v48:37

    14. [14]

      Sun B., Pukin A.V., Visser G.M., Zuilhof H.. An efficient glycosylationreactionfor the synthesis of asialo GM2 analogues[J]. Tetrahedron Lett., 2006,47:7371-7374. doi: 10.1016/j.tetlet.2006.08.008

    15. [15]

      Wang Z., Zhou L., El-Boubbou K., Ye X.S., Huang X.. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors[J]. J. Org. Chem., 2007,72:6409-6420. doi: 10.1021/jo070585g

    16. [16]

      Chernyak A., Oscarson S., Turek D.. Synthesis of the Lewisb hexasaccharide and squarate acid-HSA conjugates thereof with various saccharide loadings[J]. Carbohydr. Res., 2000,329:309-316. doi: 10.1016/S0008-6215(00)00189-0

    17. [17]

      (a) M. R. E. Aly, P. Rochaix, M. Amessou, L. Johannes, J. C. Florent, Synthesis of globo-and isoglobotriosides bearing a cinnamoylphenyl tag as novel electrophilic thiol-specific carbohydrate reagents, Carbohydr. Res. 341(2006) 2026-2036;
      (b) H. W. Hsieh, M. W. Schombs, J. Gervay-Hague, Integrating ReSET with glycosyl iodide glycosylation in step-economy syntheses of tumor-associated carbohydrate antigens and immunogenic glycolipids, J. Org. Chem. 79(2014) 1736-1748.

  • 加载中
    1. [1]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    2. [2]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    3. [3]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    4. [4]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    5. [5]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    6. [6]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    7. [7]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    8. [8]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    9. [9]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    14. [14]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    15. [15]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    16. [16]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    17. [17]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    20. [20]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

Metrics
  • PDF Downloads(2)
  • Abstract views(542)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return