Citation: Jie Mingsha, Mao Sifeng, Haifang Li, Lin Jin-Ming. Multi-channel microfluidic chip-mass spectrometry platform for cell analysis[J]. Chinese Chemical Letters, ;2017, 28(8): 1625-1630. doi: 10.1016/j.cclet.2017.05.024 shu

Multi-channel microfluidic chip-mass spectrometry platform for cell analysis

  • Corresponding author: Lin Jin-Ming, jmlin@mail.tsinghua.edu.cn
  • Received Date: 13 May 2017
    Revised Date: 24 May 2017
    Accepted Date: 31 May 2017
    Available Online: 2 August 2017

Figures(6)

  • In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry (chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and development of multi-channel microchip and MS combination, we will elaborate the key issues of constructing chip-MS platform interface. Then exciting progresses made in this field should be reviewed with well exemplified works, including chip-MS technology for cell introduction, pretreatment of cell secretions and cell metabolite analysis. We will also describe the development of integrated total analysis systems proposed by our group. We hope this brief review will inspire interested readers and provide knowledge about chip-MS platform in the bioanalysis field, particularly in cell analysis and metabolite identifying applications.
  • 加载中
    1. [1]

      Wilhelm M., Schlegl J., Hahne H.. Mass-spectrometry-based draft of the human proteome[J]. Nature, 2014,509:582-587. doi: 10.1038/nature13319

    2. [2]

      Yadav M., Jhunjhunwala S., Phung Q.T.. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing[J]. Nature, 2014,515:572-576. doi: 10.1038/nature14001

    3. [3]

      Duncombe T.A., Tentori A.M., Herr A.E.. Microfluidics:reframing biological enquiry[J]. Nat. Rev. Mol. Cell Biol., 2015,16:554-567. doi: 10.1038/nrm4041

    4. [4]

      Esch E.W., Bahinski A., Huh D.. Organs-on-chips at the frontiers of drug discovery[J]. Nat. Rev. Drug Discov., 2015,14:248-260. doi: 10.1038/nrd4539

    5. [5]

      Sackmann E.K., Fulton A.L., Beebe D.J.. The present and future role of microfluidics in biomedical research[J]. Nature, 2014,507:181-189. doi: 10.1038/nature13118

    6. [6]

      Zhu Y., Fang Q.. Analytical detection techniques for droplet microfluidics-a review[J]. Anal. Chim. Acta, 2013,787:24-35. doi: 10.1016/j.aca.2013.04.064

    7. [7]

      Brink F.T.G.V.D., Olthuis W., Berg A.V.D., Odijk M.. Miniaturization of electrochemical cells for mass spectrometry[J]. Trends Anal. Chem., 2015,70:40-49. doi: 10.1016/j.trac.2015.01.014

    8. [8]

      Oedit A., Vulto P., Ramautar R., Lindenburg P.W., Hankemeier T.. Lab-on-a-Chip hyphenation with mass spectrometry:strategies for bioanalytical applications[J]. Curr. Opin. Biotechnol., 2014,31:79-85.

    9. [9]

      He X., Chen Q., Zhang Y., Lin J.M.. Recent advances in microchip-mass spectrometry for biological analysis[J]. Trends Anal. Chem., 2014,53:84-97. doi: 10.1016/j.trac.2013.09.013

    10. [10]

      Gao D., Liu H., Jiang Y., Lin J.M.. Recent developments in microfluidic devices for in vitro cell culture for cell-biology research[J]. Trends Anal. Chem., 2012,35:150-164. doi: 10.1016/j.trac.2012.02.008

    11. [11]

      Lin L., Lin J.M.. Development of cell metabolite analysis on microfluidic platform[J]. J. Pharm. Anal., 2015,5:337-347. doi: 10.1016/j.jpha.2015.09.003

    12. [12]

      Gao D., Wei H., Guo G.S., Lin J.M.. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer[J]. Anal. Chem., 2010,82:5679-5685. doi: 10.1021/ac101370p

    13. [13]

      Liu W., Lin J.M.. Online monitoring of lactate efflux by multi-channel microfluidic chip-mass spectrometry for rapid drug evaluation[J]. ACS Sens, 2016:344-347.  

    14. [14]

      Liu W., Wang N., Lin X., Ma Y., Lin J.M.. Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture[J]. Anal. Chem., 2014,86:7128-7134. doi: 10.1021/ac501678q

    15. [15]

      Xue Q., Foret F., Dunayevskiy Y.M.. Multichannel microchip electrospray mass spectrometry[J]. Anal. Chem., 1997,69:426-430. doi: 10.1021/ac9607119

    16. [16]

      Ramsey R.S., Ramsey J.M.. Generating electrospray from microchip devices using electroosmotic pumping[J]. Anal. Chem., 1997,69:1174-1178. doi: 10.1021/ac9610671

    17. [17]

      Koster S., Verpoorte E.. A decade of microfluidic analysis coupled with electrospray mass spectrometry:an overview[J]. Lab Chip, 2007,7:1394-1412. doi: 10.1039/b709706a

    18. [18]

      Yin H., Killeen K., Brennen R.. Microfluidic chip for peptide analysis with an integrated hplc column sample enrichment column, and nanoelectrospray tip[J]. Anal. Chem., 2010,77:527-533.

    19. [19]

      Kim J.S., Knapp D.R.. Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices[J]. Electrophoresis, 2001,22:3993-3999. doi: 10.1002/(ISSN)1522-2683

    20. [20]

      Bings N.H., Wang C., Skinner C.D.. Microfluidic devices connected to fused-silica capillaries with minimal dead volume[J]. Anal. Chem., 1999,71:3292-3296. doi: 10.1021/ac981419z

    21. [21]

      Wei H., Li H., Lin J.M.. Analysis of herbicides on a single C(30) bead via a microfluidic device combined with electrospray ionization quadrupole timeof-flight mass spectrometer[J]. J. Chromatogr. A, 2009,1216:9134-9142. doi: 10.1016/j.chroma.2009.05.091

    22. [22]

      Gao D., Wei H., Guo G.S., Lin J.M.. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer[J]. Anal. Chem., 2010,82:5679-5685. doi: 10.1021/ac101370p

    23. [23]

      Li A., Wang H., Ouyang Z., Cooks R.G.. Paper spray ionization of polar analytes using non-polar solvents[J]. Chem. Commun., 2011,47:2811-2813. doi: 10.1039/c0cc05513a

    24. [24]

      Liu W., Mao S., Wu J., Lin J.M.. Development and applications of paper-based electrospray ionization-mass spectrometry for monitoring of sequentially generated droplets[J]. Analyst, 2013,138:2163-2170. doi: 10.1039/c3an36404f

    25. [25]

      Liu W., Chen Q., Lin X., Lin J.M.. Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions[J]. Analyst, 2015,140:1551-1554. doi: 10.1039/C4AN02370F

    26. [26]

      Freire S.L., Wheeler A.R.. Proteome-on-a-chip:mirage or on the horizon[J]. Lab Chip, 2006,6:1415-1423. doi: 10.1039/b609871a

    27. [27]

      Chambers A.G., Ramsey J.M.. Microfluidic dual emitter electrospray ionization source for accurate mass measurements[J]. Anal. Chem., 2012,84:1446-1451. doi: 10.1021/ac202603s

    28. [28]

      Aijian A.P., Chatterjee D., Garrell R.L.. Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis[J]. Lab Chip, 2012,12:2552-2559. doi: 10.1039/c2lc21135a

    29. [29]

      Li J., Kelly J.F., Chernushevich I., Harrison D.J., Thibault P.. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry[J]. Anal. Chem., 2000,72:599-609. doi: 10.1021/ac990986z

    30. [30]

      Rossier J.S., Youhnovski N., Lion N.. Thin-chip microspray system for high-performance Fourier-transform ion-cyclotron resonance mass spectrometry of biopolymers[J]. Angew. Chem. Int. Ed., 2003,42:54-58.  

    31. [31]

      Hoffmann P., usig U. Hä, Schulze P., Belder D.. Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer[J]. Angew. Chem. Int. Ed., 2007,46:4913-4916. doi: 10.1002/(ISSN)1521-3773

    32. [32]

      Gao D., Li H., Wang N., Lin J.M.. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer[J]. Anal. Chem., 2012,84:9230-9237.  

    33. [33]

      Su Y., Zhu Y., Fang Q.. A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry[J]. Lab Chip, 2013,13:1876-1882. doi: 10.1039/c3lc00063j

    34. [34]

      Yue G.E., Roper M.G., Jeffery E.D.. Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry[J]. Lab Chip, 2005,5:619-627. doi: 10.1039/b502446c

    35. [35]

      Sun X., Kelly R.T., Tang K., Smith R.D.. Membrane-based emitter for coupling microfluidics with ultrasensitive nanoelectrospray ionization-mass spectrometry[J]. Anal. Chem., 2011,83:5797-5803. doi: 10.1021/ac200960h

    36. [36]

      Mao P., Wang H.T., Yang P., Wang D.. Multinozzle emitter arrays for nanoelectrospray mass spectrometry[J]. Anal. Chem., 2011,83:6082-6089. doi: 10.1021/ac2011813

    37. [37]

      Venter A., Nefliu M., Cooks R.G.. Ambient desorption ionization mass spectrometry[J]. Trends Anal. Chem., 2008,27:284-290. doi: 10.1016/j.trac.2008.01.010

    38. [38]

      Podgorski D.C., Hamdan R., Mckenna A.M.. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Anal. Chem., 2012,84:1281-1287. doi: 10.1021/ac202166x

    39. [39]

      Liu J., Wang H., Manicke N.E.. Development characterization, and application of paper spray ionization[J]. Anal. Chem., 2010,82:2463-2471. doi: 10.1021/ac902854g

    40. [40]

      Chen Q., He Z., Liu W.. Engineering cell-compatible paper chips for cell culturing drug screening, and mass spectrometric sensing[J]. Adv. Healthc. Mater., 2015,4:2291-2296. doi: 10.1002/adhm.201500383

    41. [41]

      Wu J., Jie M., Dong X., Qi H., Lin J.M.. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform[J]. Rapid Commun. Mass Spectrom., 2016,30:80-86. doi: 10.1002/rcm.7643

    42. [42]

      Espy R.D., Teunissen S.F., Manicke N.E.. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood[J]. Anal. Chem., 2014,86:7712-7718. doi: 10.1021/ac5016408

    43. [43]

      Xie W., Gao D., Jin F., Jiang Y., Liu H.. Study of phospholipids in single cells using an integrated microfluidic device combined with matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal. Chem., 2015,87:7052-7059. doi: 10.1021/acs.analchem.5b00010

    44. [44]

      Lazar I.M., Kabulski J.L.. Microfluidic LC device with orthogonal sample extraction for on-chip MALDI-MS detection[J]. Lab Chip, 2013,13:2055-2065. doi: 10.1039/C3LC50190F

    45. [45]

      Yang M., Nelson R., Ros A.. Toward analysis of proteins in single cells:a quantitative approachemployingisobaric tags withMALDI mass spectrometry realized with a microfluidic platform[J]. Anal. Chem., 2016,88:6672-6679. doi: 10.1021/acs.analchem.5b03419

    46. [46]

      Moon H., Wheeler A.R., Garrell R.L., Loo J.A., Kim C.J.. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS[J]. Lab Chip, 2006,6:1213-1219. doi: 10.1039/b601954d

    47. [47]

      Korenaga A., Chen F., Li H., Uchiyama K., Lin J.M.. Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry[J]. Talanta, 2016,162:474-478.

    48. [48]

      Wu J., Jie M., Li H.. Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells[J]. Talanta, 2017,168:222-229. doi: 10.1016/j.talanta.2017.02.041

    49. [49]

      Kang D.K., Ali M.M., Zhang K., Pone E.J., Zhao W.. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy[J]. Trends Anal. Chem., 2014,58:145-153. doi: 10.1016/j.trac.2014.03.006

    50. [50]

      Brouzes E., Medkova M., Savenelli N.. Droplet microfluidic technology for single-cell high-throughput screening[J]. Proc. Natl. Acad. Sci. U. S. A., 2009,106:14195-14200. doi: 10.1073/pnas.0903542106

    51. [51]

      Mazutis L., Gilbert J., Ung W.L.. Single-cell analysis and sorting using droplet-based microfluidics[J]. Nat. Protoc., 2013,8:870-891. doi: 10.1038/nprot.2013.046

    52. [52]

      Chen Q., Utech S., Chen D.. Controlled assembly of heterotypic cells in a core-shell scaffold:organ in a droplet[J]. Lab Chip, 2016,16:1346-1349. doi: 10.1039/C6LC00231E

    53. [53]

      Chen Q., Chen D., Wu J., Lin J.M.. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold[J]. Biomicrofluidics, 2016,10064115. doi: 10.1063/1.4972107

    54. [54]

      Gao D., Liu H., Lin J.M., Wang Y., Jiang Y.. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device[J]. Lab Chip, 2012,13:978-985.

    55. [55]

      Chen Q., Wu J., Zhang Y., Lin J.M.. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry[J]. Anal. Chem., 2012,84:1695-1701. doi: 10.1021/ac300003k

    56. [56]

      Wei H., Li H., Mao S., Lin J.M.. Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device[J]. Anal. Chem., 2011,83:9306-9313. doi: 10.1021/ac201709f

    57. [57]

      Zhang J., Wu J., Li H., Chen Q., Lin J.M.. An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector[J]. Biosens. Bioelectron., 2015,68:322-328. doi: 10.1016/j.bios.2015.01.013

    58. [58]

      Gouveia M.J., Santos J., Brindley P.J.. Estrogen-like metabolites and DNAadducts in urogenital schistosomiasis-associated bladder cancer[J]. Cancer Lett., 2015,359:226-232. doi: 10.1016/j.canlet.2015.01.018

    59. [59]

      Mcknight T.R., Yoshihara H.A., Sitole L.J.. A combined chemometric and quantitative NMR analysis of HIV/AIDS serum discloses metabolic alterations associated with disease status[J]. Mol. Biosyst., 2014,10:2889-2897. doi: 10.1039/C4MB00347K

    60. [60]

      J.Zhang , Chen F., He Z.. A novel approachfor preciselycontrolledmultiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion[J]. Analyst, 2016,141:2940-2947. doi: 10.1039/C6AN00395H

    61. [61]

      Mao S., Zhang J., Li H., Lin J.M.. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication[J]. Anal. Chem., 2013,85:868-876. doi: 10.1021/ac303164b

    62. [62]

      Jie M., Li H.F., Lin L., Zhang J., Lin J.M.. Integrated microfluidic system for cell coculture and simulation of drug metabolism[J]. RSC Adv., 2016,6:54564-54572. doi: 10.1039/C6RA10407J

    63. [63]

      Wu Q., Gao D., Wei J.. Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening[J]. Chem. Commun., 2014,50:2762-2764. doi: 10.1039/C3CC49771B

    64. [64]

      Kelly R.T., Page J.S., Marginean I., Tang K., Smith R.D.. Dilution-free analysis from picoliter droplets by Nano-ESI MS[J]. Angew. Chem. Int. Ed., 2009,121:6964-6967. doi: 10.1002/ange.v121:37

  • 加载中
    1. [1]

      Weiwei HeHongbo ZhangXudong LinLili ZhuTingting ZhengHao PeiYang TianMin ZhangGuoyue ShiLei WuJianlong ZhaoGulinuer WumaierShengqing LiYufang XuHonglin LiXuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091

    2. [2]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    3. [3]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    4. [4]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    5. [5]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    6. [6]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    7. [7]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    8. [8]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    9. [9]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    10. [10]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    11. [11]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    12. [12]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    13. [13]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    14. [14]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    15. [15]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    16. [16]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    17. [17]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    18. [18]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    19. [19]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    20. [20]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

Metrics
  • PDF Downloads(5)
  • Abstract views(731)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return