Citation: Du Ying, Shen Yang-Bin, Zhan Yu-Lu, Ning Fan-Di, Yan Liu-Ming, Zhou Xiao-Chun. Highly active iridium catalyst for hydrogen production from formic acid[J]. Chinese Chemical Letters, ;2017, 28(8): 1746-1750. doi: 10.1016/j.cclet.2017.05.018 shu

Highly active iridium catalyst for hydrogen production from formic acid

  • Corresponding author: Zhou Xiao-Chun, xczhou2013@sinano.ac.cn
  • Received Date: 7 February 2017
    Revised Date: 23 March 2017
    Accepted Date: 27 April 2017
    Available Online: 20 August 2017

Figures(6)

  • Formic acid (FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H2 production. In this work, we designed a self-supporting fuel cell system, in which H2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst IrCp*Cl2bpym for FA dehydrogenation. The turnover frequency (TOF) of the catalyst for FA dehydrogenation is as high as 7150 h-1 at 50 ℃, and is up to 144, 000 h-1 at 90 ℃. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell (PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen.
  • 加载中
    1. [1]

      Zhu Q.L., Xu Q.. Liquid organic and inorganic chemical hydrides for highcapacity hydrogen storage[J]. Energy Environ. Sci., 2015,8:478-512. doi: 10.1039/C4EE03690E

    2. [2]

      Yadav M., Xu Q.. Liquid-phase chemical hydrogen storage materials[J]. Energy Environ. Sci., 2012,5:9698-9725. doi: 10.1039/c2ee22937d

    3. [3]

      Grasemann M., Laurenczy G.. Formic acid as a hydrogen source-recent developments and future trends[J]. Energy Environ. Sci., 2012,5:8171-8181. doi: 10.1039/c2ee21928j

    4. [4]

      Fellay C., Dyson P.J., Laurenczy G.. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst[J]. Angew. Chem. Int. Ed., 2008,120:4030-4032. doi: 10.1002/(ISSN)1521-3757

    5. [5]

      Johnson T.C., Morris D.J., Wills M.. Hydrogen generation from formic acid and alcohols using homogeneous catalysts[J]. Chem. Soc. Rev., 2010,39:81-88. doi: 10.1039/B904495G

    6. [6]

      Gu X., Lu Z.H., Jiang H.L., Akita T., Xu Q.. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. J. Am. Chem. Soc., 2011,133:11822-11825. doi: 10.1021/ja200122f

    7. [7]

      Fukuzumi S., Kobayashi T., Suenobu T.. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a watersoluble rhodium complex in aqueous solution[J]. ChemSusChem, 2008,1:827-834. doi: 10.1002/cssc.v1:10

    8. [8]

      Himeda Y.. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4, 4'-dihydroxy-2, 2'-bipyridine[J]. Green Chem., 2009,11:2018-2022. doi: 10.1039/b914442k

    9. [9]

      Singh A.K., Jang S., Kim J.Y.. One-pot defunctionalization of lignin-derived compounds by dual-functional Pd50Ag50/Fe3O4/N-rGO Catalyst[J]. ACS Catal., 2015,5:6964-6972. doi: 10.1021/acscatal.5b01319

    10. [10]

      Sponholz P., Mellmann D., Junge H., Beller M.. Towards a practical setup for hydrogen production from formic acid[J]. ChemSusChem, 2013,6:1172-1176. doi: 10.1002/cssc.201300186

    11. [11]

      Tedsree K., Li T., Jones S.. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nat. Nanotechnol., 2011,6:302-307. doi: 10.1038/nnano.2011.42

    12. [12]

      Wu S., Yang F., Wang H.. Mg2+-assisted low temperature reduction of alloyed AuPd/C:an efficient catalyst for hydrogen generation from formic acid at room temperature[J]. Chem. Commun., 2015,51:10887-10890. doi: 10.1039/C5CC02604K

    13. [13]

      Yan J.M., Wang Z.L., Gu L.. AuPd-MnOx/MOF-Graphene:An Efficient Catalyst for Hydrogen Production from Formic Acid at Room Temperature[J]. Adv.Energy Mater., 2015,51500107. doi: 10.1002/aenm.201500107

    14. [14]

      Zhang S., Metin O., Su D., Sun S.. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid[J]. Angew. Chem. Int. Ed., 2013,52:3681-3684. doi: 10.1002/anie.201300276

    15. [15]

      Bavykina A.V., Goesten M.G., Kapteijn F., Makkee M., Gascon J.. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst[J]. ChemSusChem, 2015,8:809-812. doi: 10.1002/cssc.v8.5

    16. [16]

      Wang Z., Lu S.M., Li J., Wang J., Li C.. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N, N'-diimine ligand in water[J]. Chem.-Eur. J., 2015,21:12592-12595. doi: 10.1002/chem.201502086

    17. [17]

      Hull J.F., Himeda Y., Wang W.H.. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures[J]. Nat. Chem., 2012,4:383-388. doi: 10.1038/nchem.1295

    18. [18]

      Boddien A., Gartner F., Jackstell R.. ortho-Metalation of iron(0) tribenzylphosphine complexes:homogeneous catalysts for the generation of hydrogen from formic acid[J]. Angew. Chem. Int. Ed., 2010,49:8993-8996. doi: 10.1002/anie.v49.47

    19. [19]

      Fukuzumi S., Kobayashi T., Suenobu T.. Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridiumruthenium complex in water[J]. J. Am. Chem. Soc., 2010,132:1496-1497. doi: 10.1021/ja910349w

    20. [20]

      Jiang K., Xu K., Zou S., Cai W.B.. B-doped Pd catalyst:boosting roomtemperature hydrogen production from formic acid-formate solutions[J]. J. Am. Chem. Soc., 2014,136:4861-4864. doi: 10.1021/ja5008917

    21. [21]

      Chen Y., Zhu Q.L., Tsumori N., Xu Q.. Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide:a non-noble metal sacrificial approach[J]. J. Am. Chem. Soc., 2015,137:106-109. doi: 10.1021/ja511511q

    22. [22]

      Cai Y.Y., Li X.H., Zhang Y.N.. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst[J]. Angew. Chem. Int. Ed., 2013,52:11822-11825. doi: 10.1002/anie.v52.45

    23. [23]

      Bi Q.Y., Du X.L., Liu Y.M.. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions[J]. J. Am. Chem. Soc., 2012,134:8926-8933. doi: 10.1021/ja301696e

    24. [24]

      Wang Z.L., Yan J.M., Ping Y.. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature[J]. Angew. Chem. Int. Ed., 2013,52:4406-4409. doi: 10.1002/anie.201301009

    25. [25]

      Yang L., Hua X., Su J.. Highly efficient hydrogen generation from formic acid-sodium formate over monodisperse AgPd nanoparticles at room temperature[J]. App. Catal. B:Environ., 2015,168-169:423-428. doi: 10.1016/j.apcatb.2015.01.003

    26. [26]

      Yoo J.S., Zhao Z.J., Nørskov J.K., Studt F.. Effect of Boron Modifications of Palladium Catalysts for the Production of Hydrogen from Formic Acid[J]. ACS Catal., 2015,5:6579-6586. doi: 10.1021/acscatal.5b01497

    27. [27]

      Qin Y.L., Liu Y.C., Liang F., Wang L.M.. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation[J]. ChemSusChem, 2015,8:260-263. doi: 10.1002/cssc.201402926

    28. [28]

      Li F.F., Gu J.N., Zhou X.C.. Single molecule electro-catalysis of non-fluorescent molecule[J]. Chin. Chem. Lett., 2015,26:1514-1517. doi: 10.1016/j.cclet.2015.09.013

    29. [29]

      Wang Y.X., Chen T.H.. A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation[J]. Chin. Chem. Lett., 2014,25:907-911. doi: 10.1016/j.cclet.2014.04.031

    30. [30]

      Zhou X., Huang Y., Xing W.. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J]. Chem. Commun., 2008:3540-3542.

    31. [31]

      Huang Y., Zhou X., Yin M., Liu C., Xing W.. Novel PdAu@Au/C Core-Shell Catalyst:Superior Activity and Selectivity in Formic Acid Decomposition for Hydrogen Generation[J]. Chem. Mater., 2010,22:5122-5128. doi: 10.1021/cm101285f

    32. [32]

      Zhou X., Huang Y., Liu C.. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature[J]. ChemSusChem, 2010,3:1379-1382. doi: 10.1002/cssc.201000199

    33. [33]

      Wang W., He T., Liu X.. Highly active carbon supported Pd-Ag nanofacets catalysts for hydrogen production from HCOOH[J]. ACS Appl. Mater. Interfaces, 2016,8:20839-20848. doi: 10.1021/acsami.6b08091

    34. [34]

      Ren M.J., Zhou Y., Tao F.F.. Controllable modification of the electronic structure of carbon-supported core-shell Cu@Pd catalysts for formic acid oxidation[J]. J. Phys. Chem. C, 2014,118:12669-12675. doi: 10.1021/jp5033417

    35. [35]

      Ren M., Kang Y., He W.. Origin of performance degradation of palladiumbased direct formic acid fuel cells[J]. App. Catal. B-Environ., 2011,104:49-53. doi: 10.1016/j.apcatb.2011.02.029

    36. [36]

      Govindaswamy P., Canivet J., Therrien B.. Mono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2, 20-bipyrimidine ligands:Synthesis, molecular structure, electrochemistry and catalytic properties[J]. J. Organomet. Chem., 2007,692:3664-3675. doi: 10.1016/j.jorganchem.2007.04.048

  • 加载中
    1. [1]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    4. [4]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    5. [5]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    6. [6]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    7. [7]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    8. [8]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    9. [9]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    10. [10]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    11. [11]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    12. [12]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    13. [13]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    14. [14]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    17. [17]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    18. [18]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    19. [19]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    20. [20]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

Metrics
  • PDF Downloads(3)
  • Abstract views(575)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return