Citation: Hou Qing-Qing, Jing Yi-Fei, Shao Xu-Sheng. Synthesis and insecticidal activities of 1, 8-naphthyridine derivatives[J]. Chinese Chemical Letters, ;2017, 28(8): 1723-1726. doi: 10.1016/j.cclet.2017.05.016 shu

Synthesis and insecticidal activities of 1, 8-naphthyridine derivatives

  • Corresponding author: Shao Xu-Sheng, shaoxusheng@ecust.edu.cn
  • Received Date: 28 February 2017
    Revised Date: 1 April 2017
    Accepted Date: 15 May 2017
    Available Online: 17 August 2017

Figures(2)

  • 1, 8-Naphthyridines (NAP) are biological important scaffolds in bioactive molecules design. By hybrid of NAP with neonicotinoid core structure, nine novel NAP derivatives were synthesized and subjected to insecticidal activities evaluation. Some of the compounds showed excellent insecticidal activity against cowpea aphids (Aphis craccivora) with LC50 values ranging from 0.011 mmol/L to 0.067 mmol/L. The results indicated that 1, 8-naphthyridine can be used as insecticidal structure for further modification.
  • 加载中
    1. [1]

      Wang K., Qian X., Cui J.. ChemInform abstract:design, synthesis, and bioactivity of cyanonitrovinyl neonicotinoids as potential insecticides[J]. Cheminform, 2011,42:1117-1122.  

    2. [2]

      Furlan L., Kreutzweiser D.. Alternatives to neonicotinoid insecticides for pest control:case studies in agriculture and forestry[J]. Environ. Sci. Pollut. Res., 2015,22:135-147. doi: 10.1007/s11356-014-3628-7

    3. [3]

      Nauen R., Denholm I.. Resistance of insect pests to neonicotinoid insecticides:Current status and future prospects[J]. Arch. Insect Biochem. Physiol., 2005,58:200-215. doi: 10.1002/(ISSN)1520-6327

    4. [4]

      Liu X., Wu X., Long Z.. Photodegradation of imidacloprid in aqueous solution by metal-free catalyst graphitic carbon nitride using an energy-saving lamp[J]. J. Agri. Food. Chem., 2015,19:4754-4760.  

    5. [5]

      Li Z., Shao X., Sun F., Zhu F.. One-Pot, Three-component synthesis of 1, 8-naphthyridine derivatives from heterocyclic ketene aminals, malononitrile dimer, and aryl aldehydes[J]. Synlett, 2015,26:2306-2312. doi: 10.1055/s-00000083

    6. [6]

      Fu L., Feng X., Wang J.J.. Efficient synthesis and evaluation of antitumor activities of novel functionalized 18-naphthyridine derivatives[J]. Acs. Comb. Sci., 2015,17:24-31. doi: 10.1021/co500120b

    7. [7]

      Jeanneau E., Nicolle -, Benoit M., Guyod -, Namil A., Leclerc G.. New thiazolo[32-a] pyrimidine derivatives, synthesis and structure-activity relationships[J]. Eur. J. Med. Chem., 1992,27:115-120. doi: 10.1016/0223-5234(92)90099-M

    8. [8]

      Tsuzuki Y., Tomita K., Shibamori K.. Synthesis and structure-activity relationships of novel 7-substituted 14-dihydro-4-oxo-1-(2-thiazolyl)-1. 8-naphthyridine-3-carboxylic acids as antitumor agents. Part 2[J]. J. Med. Chem., 2002,45:5564-5575. doi: 10.1021/jm010057b

    9. [9]

      Yang L., Wang S., Sun D.. Development of a biomimetic chondroitin sulfate-modified hydrogel to enhance the metastasis of tumor cells[J]. Sci. Rep., 2016,6:1-13. doi: 10.1038/s41598-016-0001-8

    10. [10]

      Santilli A.A., Scotese A.C., Yurchenco J.A.. ChemInform Abstract:synthesis and antibacteial evaluation of 1, 2, 3, -tetrahydro-4-oxo-1, 8-naphthridine-3-carboxylic acid esters, carbonitriles, and carboxamides[J]. J. Med. Chem., 1976,7:1038-1041.

    11. [11]

      Nishigaki S., Mizushima N., Yoneda F.. Synthetic antibacterials. 3. Nitrofurylvinyl-18-naphthyridine derivatives[J]. J. Med. Chem., 1971,14:638-640.

    12. [12]

      Singh S.B., Kaelin D.E., Meinke P.T.. Structure activity relationship of C-2 ether substituted 15-naphthyridine analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-5)[J]. Bioorg. Med. Chem. Lett., 2015,17:3630-3635.  

    13. [13]

      Gao L.Z., Xie Y.S., Li T., Huang W.L., Hu G.Q.. Synthesis and antibacterial activity of novel[12, 4]triazolo[3, 4-h] [1, 8]naphthyridine-7-carboxylic acid derivatives[J]. Chin. Chem. Lett., 2014,26:149-151.

    14. [14]

      Li B., Harjani J.R., Cormier N.S.. Besting vitamin E:Sidechain substitution is key to the reactivity of naphthyridinol antioxidants in lipid bilayers[J]. J. Am. Chem. Soc., 2013,135:1394-1405. doi: 10.1021/ja309153x

    15. [15]

      Kuroda T., Suzuki F., Tamura T., Ohmori K., Hosoe H.. A novel synthesis and potent antiinflammatory activity of 4-hydroxy-2(1H)-oxo-1-phenyl-18-naphthyridine-3-carboxamides[J]. J. Med. Chem., 1992,35:1130-1136. doi: 10.1021/jm00084a019

    16. [16]

      S. Bekkering, B.A. Blok, L.A. Joosten, et al., In vitro experimental model of trained innate immunity in human primary monocytes, Clin. Vaccine Immunol. 12(23(12)) (2016) 349-16.

    17. [17]

      Manera C., Malfitano A.M., Parkkari T., Lucchesi V., Carpi S.. New quinolone-and 1, 8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno modulatory activity[J]. Eur. J. Med. Chem., 2015,97:10-18. doi: 10.1016/j.ejmech.2015.04.034

    18. [18]

      Nam T.G., Rector C.L., Kim H.Y.. Tetrahydro-18-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins[J]. J. Am. Chem. Soc., 2007,129:10211-10219. doi: 10.1021/ja072371m

    19. [19]

      Barreiro E.J., Camara C.A., Verli H.. Design, synthesis, and pharmacological profile of novel fused pyrazolo[4, 3-d]pyridine and pyrazolo[3, 4-b] [1, 8]naphthyridine isosteres:a new class of potent and selective acetylcholinesterase inhibitors[J]. J. Med. Chem., 2003,46:1144-1152. doi: 10.1021/jm020391n

    20. [20]

      De L.R.C., Egea J., Marco-Contelles J.. Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1, 8-naphthyridine derivatives[J]. J. Med. Chem., 2010,53:5129-5143. doi: 10.1021/jm901902w

    21. [21]

      You Q., Li Z., Huang C.. Discovery of a novel series of quinolone and naphthyridine derivatives as potential topoisomerase i inhibitors by scaffold modification[J]. J. Med. Chem., 2009,52:5649-5661. doi: 10.1021/jm900469e

    22. [22]

      Dhar A.K., Mahesh R., Jindal A., Devadoss T., Bhatt S.. Design, synthesis, and pharmacological evaluation of novel 2-(4-substituted piperazin-1-yl)1, 8 naphthyridine 3-carboxylic acids as 5-ht 3 receptor antagonists for the management of depression[J]. Chem. Biol. Drug Des., 2014,84:721-731. doi: 10.1111/cbdd.12370

    23. [23]

      Laura Betti P.L.F., Tiziana C., Gino G.. study on affinity profile toward native human and bovine adenosine receptors of a series of 18-naphthyridine derivatives[J]. J. Med. Chem., 2004,47:3019-3031. doi: 10.1021/jm030977p

    24. [24]

      Hartner F.W., Hsiao Y., Eng K.K.. Methods for the synthesis of 5, 6, 7, 8-tetrahydro-1, 8-naphthyridine fragments for avb3 integrin antagonists[J]. J. Org. Chem., 2004,69:8723-8730. doi: 10.1021/jo0486950

    25. [25]

      Ferrarini P.L., Mori C., Manera C.. A novel class of highly potent and selective A1 adenosine antagonists:structure-affinity profile of a series of 18-naphthyridine derivatives[J]. J. Med. Chem., 2000,43:2814-2823. doi: 10.1021/jm990321p

    26. [26]

      Mohan M., Gujar G.T.. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes[J]. Crop Prot., 2003,22:495-504. doi: 10.1016/S0261-2194(02)00201-6

    27. [27]

      Tang H., Ji P.. Using the statistical program r instead of spss to analyze data[J]. ACS Symp. Ser., 2015,1166:135-151.  

    28. [28]

      Chae S.H., Kim S.I., Yeon S.H., Lee S.W., Ahn Y.J.. Adulticidal activity of phthalides identified in cnidium officinale rhizome to b-and q-biotypes of bemisia tabaci[J]. J. Agric. Food. Chem., 2011,59:8193-8198. doi: 10.1021/jf201927t

  • 加载中
    1. [1]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    2. [2]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    3. [3]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    4. [4]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    5. [5]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    6. [6]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    7. [7]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    10. [10]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    11. [11]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    12. [12]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    13. [13]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    19. [19]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    20. [20]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

Metrics
  • PDF Downloads(3)
  • Abstract views(557)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return