Citation: Shi Jian-Jun, Ren Gui-Hua, Wu Ning-Jie, Weng Jian-Quan, Xu Tian-Ming, Liu Xing-Hai, Tan Cheng-Xia. Design, synthesis and insecticidal activities of novel anthranilic diamides containing polyfluoroalkyl pyrazole moiety[J]. Chinese Chemical Letters, ;2017, 28(8): 1727-1730. doi: 10.1016/j.cclet.2017.05.015 shu

Design, synthesis and insecticidal activities of novel anthranilic diamides containing polyfluoroalkyl pyrazole moiety

  • Corresponding author: Liu Xing-Hai, xhliu@zjut.edu.cn Tan Cheng-Xia, tanchengxia@zjut.edu.cn
  • Received Date: 3 February 2017
    Revised Date: 27 March 2017
    Accepted Date: 7 April 2017
    Available Online: 17 August 2017

Figures(2)

  • In order to discover new molecules with good insecticidal activities, a series of anthranilic diamides containing polyfluoroalkyl pyrazole were designed and synthesized, and their structures were characterized by 1H NMR and HRMS. Bioassays demonstrated that some of the title compound exhibited excellent insecticidal activities. The larvicidal activities of compound 8a, 8c, 8g, 8k and 8l against Mythimna separata Walker were 100% at 0.8 mg/L. The insecticidal activities of compound 8a, 8c, 8e, 8g, 8k and 8l against Plutella xylostella Linnaeus were 100% at 0.4 mg/L. Surprisingly compounds 8a and 8c still showed 100% larvicidal activities against Plutella xylostella Linnaeus at 0.08 mg/L comparable to the commercialized Chlorantraniliprole. The LC50 of compound 8a and 8c against M. separata is 0.048 and 0.043 mg/L respectively.
  • 加载中
    1. [1]

      Oerke E.C.. Crop losses to pests[J]. J. Agric. Sci., 2006,144:31-43. doi: 10.1017/S0021859605005708

    2. [2]

      Wang B.L., Zhu H.W., Ma Y.. Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides[J]. J. Agric. Food Chem., 2013,61:5483-5493. doi: 10.1021/jf4012467

    3. [3]

      Bloomquist J.R.. Ion channels as targets for insecticides[J]. Annu. Rev. Entomol., 1996,41:163-190. doi: 10.1146/annurev.en.41.010196.001115

    4. [4]

      Cordova D., Benner E.A., Sacher M.D.. Anthranilic diamides:a new class of insecticides with a novel mode of action:ryanodine receptor activation[J]. Pestic. Biochem. Physiol., 2006,84:196-214. doi: 10.1016/j.pestbp.2005.07.005

    5. [5]

      Lahm G.P., Stevenson T.M., Selby T.P.. RynaxypyrTM:a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator[J]. Bioorg. Med. Chem. Lett., 2007,17:6274-6279. doi: 10.1016/j.bmcl.2007.09.012

    6. [6]

      K.A. Hughes, G.P. Lahm, T.P. Selby, et al., Cyano anthranilamide insecticides, WO 2004067528, 2004.

    7. [7]

      Clark D.A., Lahm G.P., Smith B.K.. Synthesis of insecticidal fluorinated anthranilic diamides[J]. Bioorg. Med. Chem., 2008,16:3163-3170. doi: 10.1016/j.bmc.2007.12.017

    8. [8]

      Wu J., Song B.A., Hu D.Y.. Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures[J]. Pest Manag. Sci., 2012,68:801-810. doi: 10.1002/ps.v68.5

    9. [9]

      Zhang J.F., Xu J.Y., Wang B.L.. Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea[J]. J. Agric. Food Chem., 2012,60:7565-7572. doi: 10.1021/jf302446c

    10. [10]

      Chen K., Liu Q., Ni J.P.. Synthesis:insecticidal activities and structureactivity relationship studies of novel anthranilic diamides containing pyridylpyrazole-4-carboxamide[J]. Pest Manag. Sci., 2015,71:1503-1512. doi: 10.1002/ps.3954

    11. [11]

      Hua X.W., Mao W.T., Fan Z.J.. Novel anthranilic diamide insecticides:design, synthesis, and insecticidal evaluation[J]. Aust. J. Chem., 2014,67:1491-1503. doi: 10.1071/CH13701

    12. [12]

      Zhou S., Jia Z.H., Xiong L.X.. Chiral dicarboxamide scaffolds containing a sulfiliminyl moiety as potential ryanodine receptor activators[J]. J. Agric. Food Chem., 2014,62:6269-6277. doi: 10.1021/jf501727k

    13. [13]

      Zhou S., Gu Y.C., Liu M.. Insecticidal activities of chiral N-trifluoroacetyl sulfilimines as potential ryanodine receptor modulators[J]. J. Agric. Food Chem., 2014,62:11054-11061. doi: 10.1021/jf503513n

    14. [14]

      Joseph S.V., Grettenberger I., Godfrey L.. Insecticides applied to soil of transplant plugs for Bagrada hilaris (Burmeister) (Hemiptera:Pentatomidae) management in broccoli[J]. Crop Prot., 2016,87:68-77. doi: 10.1016/j.cropro.2016.04.023

    15. [15]

      Zhao W., Shen Z.H., Xing J.H.. Synthesis and nematocidal activity of novel 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Chem. Pap., 2017,71:921-928. doi: 10.1007/s11696-016-0012-8

    16. [16]

      Zhao W., Shen Z.H., Xu T.M.. Synthesis, nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(difluoromethyl)-1Hpyrazole-4-carboxamide derivatives[J]. J. Heterocycl. Chem., 2017,54:1751-1756. doi: 10.1002/jhet.v54.3

    17. [17]

      Zhao W., Shen Z.H., Xing J.H.. Synthesis, characterization, nematocidal activity and docking study of novel pyrazole-4-carboxamide derivatives[J]. Chin. J. Struct. Chem., 2017,36:423-428.  

    18. [18]

      Zhao W., Shen Z.H., Xing J.H.. Synthesis and nematocidal activity of novel pyrazole carboxamide derivatives against Meloidogyne incognita[J]. Lett. Drug Des. Discov., 2017,14:323-329. doi: 10.2174/1570180813666160930164327

    19. [19]

      Liu X.H., Zhao W., Shen Z.H.. Synthesis, nematocidal activity and SAR study of novel difluoromethylpyrazole carboxamide derivatives containing flexible alkyl chain moieties[J]. Eur. J. Med. Chem., 2017,125:881-889. doi: 10.1016/j.ejmech.2016.10.017

    20. [20]

      Zhai Z.W., Wang Q., Shen Z.H.. Synthesis and biological activity of 1, 2, 4-triazole thioether derivatives containing pyrazole moiety[J]. Chin. J. Org. Chem., 2017,37:232-236. doi: 10.6023/cjoc201607031

    21. [21]

      Liu X.H., Tan C.X., Weng J.Q.. Synthesis, dimeric crystal structure, and fungicidal activity of 1-(4-methylphenyl)-2-(5-((3, 5-dimethyl-1H-pyrazol-1-yl)methyl)-4-phenyl-4H-1, 2, 4-triazol-3-ylthio)ethanone[J]. Phosphorus Sulfur Silicon Rel. Elem., 2011,186:558-564. doi: 10.1080/10426507.2010.508060

    22. [22]

      Mu J.X., Shi Y.X., Yang M.Y.. Design, synthesis, DFT study and antifungal activity of pyrazolecarboxamide derivatives[J]. Molecules, 2016,2168. doi: 10.3390/molecules21010068

    23. [23]

      W. Thielert, M. Maue, L. Pitta, et al, Synergistic insecticidal combinations containing pyrazole-5-carboxamide and diamide insecticides, WO 2015132168, 2015.

    24. [24]

      M. Maue, T. Harschneck, R. Fischer, et al. , Novel halogen-substituted compounds, WO 2016020441, 2016.

    25. [25]

      M. Maue, A. Decor, J. J. Hahn, et al. , Halogen-substituted compounds, WO 2015193218, 2015.

    26. [26]

      Zhai Z.W., Shi Y.X., Yang M.Y.. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1, 2, 4-triazolo[4, 3-a] pyridine moiety[J]. Lett. Drug Des. Discov., 2016,13:521-525. doi: 10.2174/157018081306160618181757

    27. [27]

      Yan S.L., Yang M.Y., Sun Z.H.. Synthesis and antifungal activity of 1, 2, 3-thiadiazole derivatives containing 1, 3, 4-thiadiazole moiety[J]. Lett. Drug Des. Discov., 2014,11:940-943. doi: 10.2174/1570180811666140423222141

    28. [28]

      Liu X.H., Wang Q., Sun Z.H.. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti[J]. Pest Manag. Sci., 2017,73:953-959. doi: 10.1002/ps.2017.73.issue-5

    29. [29]

      Zhang L.J., Yang M.Y., Sun Z.H.. Synthesis and antifungal activity of 1, 3, 4-thiadiazole derivatives containing pyridine group[J]. Lett. Drug Des. Discov., 2014,11:1107-1111. doi: 10.2174/1570180811666140610212731

    30. [30]

      X. H. Liu, Y. M. Fang, F. Xie, et al. , Synthesis and in vivo fungicidal activity of some new quinoline derivatives against rice blast, Pest Manag. Sci. (2017), doi: http://dx.doi.org/10.1002/ps.4556.

    31. [31]

      Liu X.H., Zhao W., Shen Z.H.. Synthesis:nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1Hpyrazole-4-carboxamide derivatives[J]. Bioorg. Med. Chem. Lett., 2016,26:3626-3628. doi: 10.1016/j.bmcl.2016.06.004

    32. [32]

      Wu J., Xie D.D., Shan W.L.. Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure[J]. Chem. Pap., 2015,69:993-1003.  

    33. [33]

      R. A. Berger, J. L. Flexner, Anthranilamide arthropodicide treatment, WO 2003024222, 2003.

  • 加载中
    1. [1]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    4. [4]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    5. [5]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    8. [8]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    9. [9]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    10. [10]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    11. [11]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    14. [14]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    15. [15]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    16. [16]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(4)
  • Abstract views(706)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return