Citation: Cheng Bin, Li Yi-Xian, Jia Yue-Mei, Yu Chu-Yi. Concise synthesis of 1-epi-castanospermine[J]. Chinese Chemical Letters, ;2017, 28(8): 1688-1692. doi: 10.1016/j.cclet.2017.05.013 shu

Concise synthesis of 1-epi-castanospermine

  • Corresponding author: Yu Chu-Yi, yucy@iccas.ac.cn
  • Received Date: 28 March 2017
    Revised Date: 5 May 2017
    Accepted Date: 15 May 2017
    Available Online: 18 August 2017

Figures(6)

  • 1-epi-Castanospermine (5) was synthesized from readily available 2, 3, 4, 6-tetra-O-benzyl-1-deoxynojirimycin (11) in 9 steps and 21% overall yield, with selective debenzylation, Barbier reaction and reductive amination as the main reaction steps.
  • 加载中
    1. [1]

      (a) V. H. Lillelund, H. H. Jensen, X. Liang, M. Bols, Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin, Chem. Rev. 102(2002) 515-554;
      (b) G. W. J. Watson, N. Asano, R. J. Molyneux, R. J. Nash, Polyhydroxylated alkaloids-natural occurrence and therapeutic applications, Phytochemistry 56(2001) 265-295.

    2. [2]

      Pili R., Chang J., Partis R.A.. The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and Inhibits tumor growth[J]. Cancer Res., 1995,55:2920-2926.  

    3. [3]

      (a) H. Nojima, I. Kimura, F. J. Chen, et al. , Antihyperglycemic effects of Ncontaining sugars from xanthocercis zambesiaca, morus bombycis, aglaonema treubii, and castanospermum australe in streptozotocin-diabetic mice, J. Nat. Prod. 61(1998) 397-400;
      (b) J. A. Balfour, D. McTavish, Acarbose, Drugs 46(1993) 1025-1054.

    4. [4]

      Truscheit E., Frommer W., Junge B.. Chemistry and biochemistry of microbial α-glucosidase iInhibitors[J]. Angew. Chem. Int. Ed., 1981,20:744-761. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Fleet G.W.J., Karpas A., Dwek R.A.. Inhibition of HIV replication by aminosugar derivatives[J]. FEBS Lett., 1988,237:128-132. doi: 10.1016/0014-5793(88)80185-6

    6. [6]

      Hohenschutz L.D., Bell E.A., Jewess P.J.. Castanospermine A 1, 6, 7, 8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of castanospermum australe[J]. Phytochemistry, 1981,20:811-814. doi: 10.1016/0031-9422(81)85181-3

    7. [7]

      Nash R.J., Fellows L.E., Dring J.V.. Castanospermine in alexa species[J]. Phytochemistry, 1988,27:1403-1404. doi: 10.1016/0031-9422(88)80203-6

    8. [8]

      (a) B. C. Campbell, R. J. Molyneux, K. C. Jones, Differential inhibition by castanospermine of various insect disaccharidases, J. Chem. Ecol. 13(1987) 1759-1770;
      (b) Y. T. Pan, H. Hori, R. Saul, et al. , Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin, Biochemistry 22(1983) 3975-3984;
      (c) R. Saul, J. P. Chambers, R. J. Molyneux, A. D. Elbein, Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase, Arch. Biochem. Biophys. 221(1983) 593-597;
      (d) T. Szumilo, G. P. Kaushal, A. D. Elbein, Purification and properties of glucosidase I from mung bean seedlings, Arch. Biochem. Biophys. 247(1986) 261-271.

    9. [9]

      (a) G. W. J. Fleet, N. G. Ramsden, R. J. Molyneux, G. S. Jacob, Synthesis of 6-epicastanospermine and 1, 6-diepicastanospermine from l-gulonolactone and synthesis of l-6-epicastanospermine and l-1, 6-diepicastanospermine from dgulonolactone, Tetrahedron Lett. 29(1988) 3603-3606;
      (b) G. W. J. Fleet, N. G. Ramsden, R. J. Nash, et al. , Synthesis of the enantiomers of 6-epicastanospermine and 1, 6-diepicastanospermine from d-and lgulonolactone, Carbohydr. Res. 205(1990) 269-282.

    10. [10]

      Bernotas R.C., Ganem B.. Total syntheses of (+)-castanospermine and (+)-deoxynojirimycin[J]. Tetrahedron Lett., 1984,25:165-168. doi: 10.1016/S0040-4039(00)99830-7

    11. [11]

      Winchester B.G., Cenci di Bello I., Richardson A.C.. The structural basis of the inhibition of human glycosidases by castanospermine analogues[J]. Biochem. J., 1990,269:227-231. doi: 10.1042/bj2690227

    12. [12]

      Whitby K., Taylor D., Patel D., Ahmed P., Tyms A.S.. Action of celgosivir (6-Obutanoyl castanospermine) against the pestivirus BVDV:implications for the treatment of hepatitis C[J]. Antiviral Chem. Chemother., 2004,15:141-151. doi: 10.1177/095632020401500304

    13. [13]

      (a) J. Mulzer, H. Dehmlow, J. Buschmann, P. Luger, Stereocontrolled total synthesis of the unnatural enantiomers of castanospermine and 1-epicastanospermine, J. Org. Chem. 57(1992) 3194-3202;
      (b) H. Ina, C. Kibayashi, Total syntheses of (+)-castanospermine and (+)-1-epicastanospermine and their 1-O-αcyl derivatives from a common chiral building block, J. Org. Chem. 58(1993) 52-61;
      (c) S. E. Denmark, B. Herbert, Synthesis of (—)-7-epiaustraline and (—)-1-epicastanospermine, J. Org. Chem. 65(2000) 2887-2896;
      (d) L. Cronin, P. V. Murphy, Novel synthesis of castanospermine and 1-epicastanospermine, Org. Lett. 7(2005) 2691-2693;
      (e) T. J. Wu, P. Q. Huang, A concise approach to (+)-1-epi-castanospermine, Tetrahedron Lett. 49(2008) 383-386;
      (f) G. Liu, T. J. Wu, Y. P. Ruan, P. Q. Huang, A flexible approach to azasugars: asymmetric total syntheses of (+)-castanospermine, (+)-7-deoxy-6-epicastanospermine, and (+)-1-epi-castanospermine, Chem. Eur. J. 16(2010)5755-5768;
      (g) N. B. Kalamkar, V. G. Puranik, D. D. Dhavale, Synthesis of C1-and C8 aepimers of (+)-castanospermine from d-glucose derived γ, δ-epoxyazide: intramolecular 5-endo epoxide opening approach, Tetrahedron 67(2011) 2773-2778.

    14. [14]

      Wrodnigg T.M.. From lianas to glycobiology tools:twenty-five years of 2, 5-dideoxy-2, 5-imino-d-mannitol[J]. Monatsh. Chem., 2002,133:393-426. doi: 10.1007/s007060200018

    15. [15]

      Wennekes T., van den Berg R.J.B.H.N., Donker W.. Development of adamantan-1-yl-methoxy-functionalized 1-deoxynojirimycin derivatives as selective inhibitors of glucosylceramide metabolism in man[J]. J. Org. Chem., 2007,72:1088-1097. doi: 10.1021/jo061280p

    16. [16]

      (a) R. J. Tennant-Eyles, B. G. Davis, A. J. Fairbanks, Peptide templated glycosylation reactions, Tetrahedron: Asymmetry 11(2000) 231-243;
      (b) N. Miquel, G. Doisneau, J. M. Beau, Reductive samariation of anomeric 2-pyridyl sulfones with catalytic nickel: an unexpected improvement in the synthesis of 1, 2-trans-diequatorial C-glycosyl compounds, Angew. Chem. 112(2000) 4277-4280;
      (c) G. Yang, X. Ding, F. Kong, Selective 6-O-debenzylation of mono-and disaccharide derivatives using ZnCl2-Ac2O-HOAc, Tetrahedron Lett. 38(1997) 6725-6728.

    17. [17]

      Petrier C., Luche J.L.. Allylzinc reagent additions in aqueous media[J]. J. Org. Chem., 1985,50:910-912. doi: 10.1021/jo00206a047

    18. [18]

      Mattes H., Benezra C.. Reformatsky-type reactions in aqueous media. Use ofbronometryl-acrylic acid for the synthesis of α-methylene-γ-butyrolactones[J]. Tetrahedron Lett, 1985,26:5697-5698. doi: 10.1016/S0040-4039(01)80923-0

    19. [19]

      Hamana H., Ikota N., Ganem B.. Chelate selectivity in chelation-controlled allylations:a new synthesis of castanospermine and other bioactive indolizidine alkaloids[J]. J. Org. Chem., 1987,52:5492-5494. doi: 10.1021/jo00233a045

    20. [20]

      (a) M. D. Groaning, A. I. Meyers, Remote steric effects in the Sakurai reaction, Tetrahedron Lett. 40(1999) 8071-8074;
      (b) P. H. Lee, K. Lee, S. Y. Sung, S. Chang, The catalytic sakurai reaction, J. Org. Chem. 66(2001) 8646-8649.

    21. [21]

      Bates R.W., Khanizeman R.I.N., Hirao H., Tay Y.S., Sae-Lao P.. A total synthesis of (+)-negamycin through isoxazolidine allylation[J]. Org. Biomol. Chem., 2014,12:4879-4884. doi: 10.1039/c4ob00537f

    22. [22]

      Kalita P.K., Phukan P.. Facile chemoselective carbonyl allylation of chalcones with allyltributylstannane catalyzed by CuI[J]. Tetrahedron Lett., 2013,54:4442-4445. doi: 10.1016/j.tetlet.2013.06.037

    23. [23]

      Li Y.X., Shimada Y., Sato K.. Synthesis and glycosidase inhibition of australine and its fluorinated derivatives[J]. Org. Lett., 2015,17:716-719. doi: 10.1021/ol503728e

    24. [24]

      Izquierdo I., Tamayo J.A., Rodríguez M., Franco F., Lo Re D.. Synthesis of (+)-1-epi-castanospermine from l-sorbose[J]. Tetrahedron, 2008,64:7910-7913. doi: 10.1016/j.tet.2008.06.021

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    3. [3]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    4. [4]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    5. [5]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    6. [6]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    7. [7]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    8. [8]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    9. [9]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    10. [10]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    11. [11]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    12. [12]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    17. [17]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    18. [18]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    19. [19]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    20. [20]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

Metrics
  • PDF Downloads(4)
  • Abstract views(567)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return