Citation: Zhang Jia-Yu, Huang Xi, Shen Qiao-Ying, Wang Jia-Yi, Song Gong-Hua. Room temperature multicomponent synthesis of diverse propargylamines using magnetic CuFe2O4 nanoparticle as an efficient and reusable catalyst[J]. Chinese Chemical Letters, ;2018, 29(1): 197-200. doi: 10.1016/j.cclet.2017.05.012 shu

Room temperature multicomponent synthesis of diverse propargylamines using magnetic CuFe2O4 nanoparticle as an efficient and reusable catalyst

  • Corresponding author: Wang Jia-Yi, jiayi.wang@ecust.edu.cn Song Gong-Hua, ghsong@ecust.edu.cn
  • Received Date: 27 March 2017
    Revised Date: 27 April 2017
    Accepted Date: 15 May 2017
    Available Online: 19 January 2017

Figures(3)

  • Copper ferrite (CuFe2O4) nanoparticles catalyzed room temperature multicomponent reaction of aliphatic amines, formaldehyde, arylboronic acids and alkynyl carboxylic acids was reported for the synthesis of diverse propargylamines with good to excellent yields. The catalyst can be magnetically recovered and reused at least five times without significant loss of activity.
  • 加载中
    1. [1]

      (a) B. K. Min, C. M. Friend, Chem. Rev. 107(2007) 2709-2724;
      (b) M. Fagnoni, D. Dondi, D. Ravelli, A. Albini, Chem. Rev. 107(2007) 2725-2756;
      (c) H. R. Hobbs, N. R. Thomas, Chem. Rev. 107(2007) 2786-2820;
      (d) M. Gholinejad, B. Karimi, F. Mansouri, J. Mol. Catal. A: Chem. 386(2014) 20-27.

    2. [2]

      (a) R. Abu-Rezip, H. Alper, D. S. Wang, M. L. Post, J. Am. Chem. Soc 128(2006) 5279-5282;
      (b) T. Kim, T. Hyeon, Nanotechnology 25(2013) 010201;
      (c) A. H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46(2007) 1222-1244.

    3. [3]

      (a) D. W. Elliott, W. X. Zhang, Sci. Environ. Technol. 35(2001) 4922-4926;
      (b) A. Hu, G. T. Yee, W. Lin, J. Am. Chem. Soc. 127(2005) 2486;
      (c) K. D. Yi, S. S. Lee, Y. J. Ying, Chem. Mater. 18(2006) 2459;
      (d) S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. Int. Ed. 43(2004) 5645-5649.

    4. [4]

      B. Sreedhar, A.S. Kumar, P.S. Reddy, Tetrahedron Lett. 51(2010) 1891-1895.  doi: 10.1016/j.tetlet.2010.02.016

    5. [5]

      Z.L. Wang, RSC Adv. 5(2015) 5563-5566.  doi: 10.1039/C4RA14486D

    6. [6]

      F.M. Moghaddam, R. Pourkaveh, Catal. Commun. 94(2017) 33-37.  doi: 10.1016/j.catcom.2017.02.009

    7. [7]

      (a) X. Y. Peng, J. Y. Qu, M. B. Wu, RSC Adv. 6(2016) 104549-404555;
      (b) P. Xue, Z. Z. Kang, X. Y. Lai, G. Q. Qu, Y. Y. Li, Chin. Chem. Lett. 24(2013) 1112-1114.

    8. [8]

      (a) F. M. Moghaddam, B. K. Foroushani, H. R. Rezvani, RSC Adv. 5(2015) 18092-18096;
      (b) J. Liu, J. Shen, M. Li, L. P. Guo, Chin. Chem. Lett. 26(2015) 1478-1484.

    9. [9]

      (a) E. Ruijter, R. Scheffelaar, R. V. A. Orru, Angew. Chem. Int. Ed. 50(2011) 6234-6246;
      (b) S. Brauch, S. S. Van Berkel, B. Westermann, Chem. Soc. Rev. 42(2013) 4948-4962;
      (c) J. E. Biggs-Houck, A. Younai, J. T. Shaw, Curr. Opin. Chem. Biol. 14(2010) 371-382;
      (d) A. Dömling, W. Wang, K. Wang, Chem. Rev. 112(2012) 3083-3135.

    10. [10]

      (a) C. Wei, L. Zhang, C. J. Li, Synlett (2004) 1472-1483;
      (b) V. A. Peshkov, O. P. Pereshivko, E. V. Van der Eycken, Chem. Soc. Rev. 41(2012) 3790-3807;
      (c) B. M. Choudary, C. Sridhar, M. L. Kantam, B. Sreedhar, Tetrahedron Lett. 45(2004) 7319-7321;
      (d) C. Wei, C. J. Li, J. Am. Chem. Soc. 125(2003) 9584-9585;
      (e) C. Wei, Z. Li, C. J. Li, Org. Lett. 5(2003) 4473-4475;
      (f) Y. Zhang, P. Li, M. Wang, L. Wang, J. Org. Chem. 74(2009) 4364-4367;
      (g) T. Zeng, W. W. Chen, C. M. Cirtius, et al., Green Chem. 12(2010) 570-573;
      (h) N. Uhlig, C. J. Li, Org. Lett. 14(2012) 3000-3003.

    11. [11]

      (a) D. F. Harvey, D. M. Sigano, J. Org. Chem. 61(1996) 2268-2272;
      (b) A. Fürstner, H. Szillat, F. Stelzer, J. Am. Chem. Soc 122(2000) 6785-6786;
      (c) Y. Yamamoto, H. Hayashi, T. Saigoku, H. Nishiyama, J. Am. Chem. Soc. 127(2005) 10804-10805;
      (d) B. Yan, Y. Liu, Org. Lett. 9(2007) 4323-4326;
      (e) E. S. Lee, H. S. Yeom, J. H. Hwang, S. Shin, Eur. J. Org. Chem. 21(2007) 3503-3507;
      (f) D. S. Ermolatev, J. B. Bariwal, H. P. L. Steenackers, S. C. J. De Keersmaecker, E. V. Van der Eycken, Angew. Chem. Int. Ed. 49(2010) 9465-9468;
      (g) O. P. Pereshivko, V. A. Peshkov, J. Jacobs, L. V. Meervelt, E. V. Van der Eycken, Adv. Synth. Catal. 355(2013) 781-789.

    12. [12]

      (a) M. Konishi, H. Ohkuma, T. Tsuno, et al., J. Am. Chem. Soc. 112(1990) 3715-3716;
      (b) M. A. Huffman, N. Yasuda, A. E. DeCamp, E. J. J. Grabowski, J. Org. Chem. 60(1995) 1590-1594;
      (c) G. S. Kauffman, G. D. Harris, R. L. Dorow, et al., Org. Lett. 2(2000) 3119-3121;
      (d) B. M. Trost, C. K. Chung, A. B. Pinkerton, Angew. Chem. Int. Ed. 43(2004) 4327-4329;
      (e) J. X. Ji, J. Wu, A. S. C. Chan, Proc. Natl. Acad. Sci. U. S. A. 102(2005) 11196-11200;
      (f) A. Hoepping, K. M. Johnson, C. George, J. Flippen-Anderson, A. P. Kozikowski, J. Med. Chem. 43(2000) 2064-2071;
      (g) C. Swithenbank, P. J. McNulty, K. L. Viste, J. Agric. Food Chem. 19(1971) 417-421;
      (h) D. Enders, U. Reinhold, Tetrahedron: Asymmetry 8(1997) 1895-1946;
      (i) N. Sharma, U. K. Sharma, N. M. Mishra, E. V. Van der Eycken, Adv. Synth. Catal. 356(2014) 1029-1037.

    13. [13]

      (a) B. M. Choudary, C. Sridhar, M. L. Kantam, B. Screedhar, Tetrahedron Lett. 45(2004) 7319-7321;
      (b) M. L. Kanta, J. Yadav, S. Laha, S. Jha, Synlett 11(2009) 1791-1794;
      (c) T. Q. Zeng, L. Yang, R. Hudson, et al., Org. Lett. 13(2011) 442-445.

    14. [14]

      J. Wang, Q. Shen, J. Zhang, G. Song, Tetrahedron Lett. 56(2015) 903-906.  doi: 10.1016/j.tetlet.2014.12.142

    15. [15]

      (a) P. Kyungho, H. Yumi, L. Sunwoo, Org. Lett. 15(2013) 3322-3325;
      (b) H. D. Feng, D. S. Ermolatev, G. H. Song, E. V. Vander Eycken, J. Org. Chem. 77(2012) 5149-5154.

    16. [16]

      N.R. Candeias, F. Montalbano, P.M.S.D. Cal, P.M.P. Gois, Chem. Rev. 110(2010) 6169-6193.  doi: 10.1021/cr100108k

    17. [17]

      J.Y. Wang, P. Li, Q. Shen, G.H. Song, Tetrahedron Lett. 55(2014) 3888-3891.  doi: 10.1016/j.tetlet.2014.03.131

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    2. [2]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    3. [3]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    4. [4]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    5. [5]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    6. [6]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    7. [7]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    10. [10]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191

    11. [11]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    12. [12]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    13. [13]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    14. [14]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    15. [15]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    16. [16]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    17. [17]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    20. [20]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

Metrics
  • PDF Downloads(2)
  • Abstract views(593)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return