Citation: Jiang You, He Mu-Yi, Zhang Wen-Jing, Luo Pan, Guo Dan, Fang Xiang, Xu Wei. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology[J]. Chinese Chemical Letters, ;2017, 28(8): 1640-1652. doi: 10.1016/j.cclet.2017.05.008 shu

Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology

Figures(4)

  • Capillary electrophoresis-mass spectrometry (CE-MS) is a powerful separation and analytical technique in the field of analytical chemistry. This review provides an update of instrumentation developments in the methodology of CE-MS systems. A selection of relevant articles covers the literatures published from Jan. 2013 to Feb. 2017. Special attentions were paid to the sample injection and ionization processes. Applications of these CE-MS systems were also introduced through representative examples. General conclusions and perspectives were given at the last.
  • 加载中
    1. [1]

      Kleparnik K.. Recent advances in combination of capillary electrophoresis with mass spectrometry:methodology and theory[J]. Electrophoresis, 2015,36:159-178. doi: 10.1002/elps.v36.1

    2. [2]

      Kleparnik K.. Recent advances in the combination of capillary electrophoresis with mass spectrometry:from element to single-cell analysis[J]. Electrophoresis, 2013,34:70-85. doi: 10.1002/elps.v34.1

    3. [3]

      Ibanez C., Simo C., Garcia-Canas V., Cifuentes A., Castro-Puyana M.. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics:a review[J]. Anal. Chim. Acta, 2013,802:1-13. doi: 10.1016/j.aca.2013.07.042

    4. [4]

      Lindenburg P.W., Haselberg R., Rozing G., Ramautar R.. Developments in interfacing designs for CE-MS:towards enabling tools for proteomics and metabolomics[J]. Chromatographia, 2015,78:367-377. doi: 10.1007/s10337-014-2795-5

    5. [5]

      Rodriguez Robledo V., Smyth W.F.. Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and targetbased applications[J]. Electrophoresis, 2014,35:2292-2308. doi: 10.1002/elps.v35.16

    6. [6]

      Stalmach A., Albalat A., Mullen W., Mischak H.. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications[J]. Electrophoresis, 2013,34:1452-1464. doi: 10.1002/elps.v34.11

    7. [7]

      Hirayama A., Wakayama M., Soga T.. Metabolome analysis based on capillary electrophoresis-mass spectrometry[J]. Trac-Trends in Anal. Chem., 2014,61:215-222. doi: 10.1016/j.trac.2014.05.005

    8. [8]

      Ramautar R., Somsen G.W., de Jong G.J.. CE-MS for metabolomics:developments and applications in the period 2010-2012[J]. Electrophoresis, 2013,34:86-98. doi: 10.1002/elps.v34.1

    9. [9]

      Ramautar R., Somsen G.W., de Jong G.J.. CE-MS for metabolomics:developments and applications in the period 2012-2014[J]. Electrophoresis, 2015,36:212-224. doi: 10.1002/elps.v36.1

    10. [10]

      Wang X., Li K., Adams E., Van Schepdael A.. Capillary electrophoresis-mass spectrometry in metabolomics:the potential for driving drug discovery and development[J]. Curr. Drug. Metab., 2013,14:807-813. doi: 10.2174/13892002113149990101

    11. [11]

      Albalat A., Husi H., Siwy J.. Capillary electrophoresis interfaced with a mass spectrometer (CE-MS):technical considerations and applicability for biomarker studies in animals[J]. Curr. Protein Pept. Sci., 2014,15:23-35. doi: 10.2174/1389203715666140221123920

    12. [12]

      Pontillo C., Filip S., Borras D.M.. CE-MS-based proteomics in biomarker discovery and clinical application[J]. Proteomics Clin. Appl., 2015,9:322-334. doi: 10.1002/prca.201400115

    13. [13]

      Albalat A., Husi H., Stalmach A., Schanstra J.P., Mischak H.. Classical MALDIMS versus CE-based ESI-MS proteomic profiling in urine for clinical applications[J]. Bioanalysis, 2014,6:247-266. doi: 10.4155/bio.13.313

    14. [14]

      Latosinska A., Frantzi M., Vlahou A., Mischak H.. Clinical applications of capillary electrophoresis coupled to mass spectrometry in biomarker discovery:focus on bladder cancer[J]. Proteomics Clin. Appl., 2013,7:779-793. doi: 10.1002/prca.v7.11-12

    15. [15]

      Mischak H., Vlahou A., Ioannidis J.P.A.. Technical aspects and inter-laboratory variability in native peptide profiling:the CE-MS experience[J]. Clin. Biochem., 2013,46:432-443. doi: 10.1016/j.clinbiochem.2012.09.025

    16. [16]

      Wang C.-W., Her G.-R.. The development of a counterflow-assisted preconcentration technique in capillary electrophoresis electrospray-ionization mass spectrometry[J]. Electrophoresis, 2014,35:1251-1258. doi: 10.1002/elps.v35.9

    17. [17]

      Ulivo L. D', Feng Y.-L.. Expanding the scope of pressure-assisted electrokinetic injection for online concentration of positively charged analytes in capillary electrophoresis-mass spectrometry[J]. Electrophoresis, 2015,36:1024-1027. doi: 10.1002/elps.v36.7-8

    18. [18]

      Park S.-G., Murray K.K.. Ambient laser ablation sampling for capillary electrophoresis mass spectrometry[J]. Rapid Commun. Mass Spectrom., 2013,27:1673-1680. doi: 10.1002/rcm.6618

    19. [19]

      Wang N.H., Her G.R.. The development of a hydrodynamic flow assisted double junction interface for signal improvement in capillary electrophoresis-mass spectrometry using positively charged nonvolatile additives[J]. J. Chromatog. A, 2015,1379:106-111. doi: 10.1016/j.chroma.2014.12.046

    20. [20]

      Kelly R.T., Wang C., Rausch S.J., Lee C.S., Tang K.. Pneumatic microvalve-based hydrodynamic sample injection for high-throughput, quantitative zone electrophoresis in capillaries[J]. Anal. Chem., 2014,86:6723-6729. doi: 10.1021/ac501910p

    21. [21]

      Kuehnbaum N.L., Gillen J.B., Kormendi A.. Multiplexed separations for biomarker discovery in metabolomics:elucidating adaptive responses to exercise training[J]. Electrophoresis, 2015,36:2226-2236. doi: 10.1002/elps.v36.18

    22. [22]

      Kuehnbaum N.L., Kormendi A., Britz-McKibbin P.. Multisegment injectioncapillary electrophoresis-mass spectrometry:a high-throughput platform for metabolomics with high data fidelity[J]. Anal. Chem., 2013,85:10664-10669. doi: 10.1021/ac403171u

    23. [23]

      Grundmann M., Matysik F.-M.. Analyzing small samples with high efficiency:capillary batch injection-capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal. Chem., 2012,404:1713-1721. doi: 10.1007/s00216-012-6282-2

    24. [24]

      Mark J.J.P., Beutner A., Cindric M., Matysik F.-M.. Microanalytical study of subnanoliter samples by capillary electrophoresis-mass spectrometry with 100% injection efficiency[J]. Microchim. Acta, 2015,182:351-359. doi: 10.1007/s00604-014-1339-x

    25. [25]

      Martinez-Villalba A., Nunez O., Moyano E., Teresa Galceran M.. Field amplified sample injection-capillary zone electrophoresis for the analysis of amprolium in eggs[J]. Electrophoresis, 2013,34:870-876. doi: 10.1002/elps.201200579

    26. [26]

      Cheng H., Han C., Xu Z., Liu J., Wang Y.. Sensitivity enhancement by fieldamplified sample injection in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry for bromine speciation in bread[J]. Food Anal. Method., 2014,7:2153-2162. doi: 10.1007/s12161-014-9848-0

    27. [27]

      He Y., Li X., Tong P.. An online field-amplification sample stacking method for the determination of beta(2)-agonists in human urine by CE-ESI/MS[J]. Talanta, 2013,104:97-102. doi: 10.1016/j.talanta.2012.11.041

    28. [28]

      Hung S.-H., Her G.-R.. A convenient and sensitive method for haloacetic acid analysis in tap water by on-line field-amplified sample-stacking CE-ESI-MS[J]. J. Sep. Sci., 2013,36:3635-3643. doi: 10.1002/jssc.v36.21-22

    29. [29]

      Ito E., Nakajima K., Waki H.. Structural characterization of pyridylaminated oligosaccharides derived from neutral glycosphingolipids by high-sensitivity capillary electrophoresis-mass spectrometry[J]. Anal. Chem., 2013,85:7859-7865. doi: 10.1021/ac401460f

    30. [30]

      Wuethrich A., Haddad P.R., Quirino J.P.. Field-enhanced sample injection micelle-to-solvent stacking capillary zone electrophoresis-electrospray ionization mass spectrometry of antibiotics in seawater after solid-phase extraction[J]. Electrophoresis, 2016,37:1139-1142. doi: 10.1002/elps.v37.9

    31. [31]

      Palatzky P., Zoepfl A., Hirsch T., Matysik F.-M.. Electrochemically assisted injection in combination with capillary electrophoresis-mass spectrometry (EAI-CE-MS)-mechanistic and quantitative studies of the reduction of 4-nitrotoluene at various carbon-based screen-printed electrodes[J]. Electroanalysis, 2013,25:117-122. doi: 10.1002/elan.201200393

    32. [32]

      Scholz R., Palatzky P., Matysik F.-M.. Simulation of oxidative stress of guanosine and 8-oxo-7, 8-dihydroguanosine by electrochemically assisted injection-capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal. Chem., 2014,406:687-694. doi: 10.1007/s00216-013-7500-2

    33. [33]

      Jarvas G., Guttman A., Foret F.. Numerical modeling of capillary electrophoresis-electrospray mass spectrometry interface design[J]. Mass Spectrom. Rev., 2015,34:558-569. doi: 10.1002/mas.v34.5

    34. [34]

      Bonvin G., Schappler J., Rudaz S.. Capillary electrophoresis-electrospray ionization-mass spectrometry interfaces:fundamental concepts and technical developments[J]. J. Chromatogr. A, 2012,1267:17-31. doi: 10.1016/j.chroma.2012.07.019

    35. [35]

      Krenkova J., Kleparnik K., Grym J., Luksch J., Foret F.. Self-aligning subatmospheric hybrid liquid junction electrospray interface for capillary electrophoresis[J]. Electrophoresis, 2016,37:414-417. doi: 10.1002/elps.v37.3

    36. [36]

      Lindenburg P.W., Ramautar R., Jayo R.G., Chen D.D.Y., Hankemeier T.. Capillary electrophoresis-mass spectrometry using a flow-through microvial interface for cationic metabolome analysis[J]. Electrophoresis, 2014,35:1308-1314. doi: 10.1002/elps.v35.9

    37. [37]

      Lin L., Liu X.Y., Zhang F.M.. Analysis of heparin oligosaccharides by capillary electrophoresis-negative-ion electrospray ionization mass spectrometry[J]. Anal. Bioanal. Chem., 2017,409:411-420. doi: 10.1007/s00216-016-9662-1

    38. [38]

      Sun X.J., Lin L., Liu X.Y.. Capillary electrophoresis-mass spectrometry for the analysis of heparin oligosaccharides and low molecular weight heparin[J]. Anal. Chem., 2016,88:1937-1943. doi: 10.1021/acs.analchem.5b04405

    39. [39]

      Choi S.B., Zamarbide M., Manzini M.C., Nemes P.. Tapered-tip capillary electrophoresis nano-electrospray ionization mass spectrometry for ultrasensitive proteomics:the mouse cortex[J]. J. Am. Soc. Mass Spectrom., 2017,28:597-607. doi: 10.1007/s13361-016-1532-8

    40. [40]

      Jeong J.-S., Kim S.-K., Park S.-R.. Amino acid analysis of dried blood spots for diagnosis of phenylketonuria using capillary electrophoresis-mass spectrometry equipped with a sheathless electrospray ionization interface[J]. Anal. Bioanal. Chem., 2013,405:8063-8072. doi: 10.1007/s00216-013-6999-6

    41. [41]

      Huang J.-L., Hsu R.-Y., Her G.-R.. The development of a sheathless capillary electrophoresis electrospray ionization-mass spectrometry interface based on thin conducting liquid film[J]. J.Chromatogr. A, 2012,1267:131-137. doi: 10.1016/j.chroma.2012.08.081

    42. [42]

      Wang C.-W., Her G.-R.. Sheathless capillary electrophoresis electrospray ionization-mass spectrometry interface based on poly(dimethylsiloxane) membrane emitterand thin conducting liquid film[J]. Electrophoresis, 2013,34:2538-2545. doi: 10.1002/elps.201300069

    43. [43]

      Tycova A., Foret F.. Capillary electrophoresis in an extended nanospray tipelectrosprayas an electrophoretic column[J]. J. Chromatogr. A, 2015,1388:274-279. doi: 10.1016/j.chroma.2015.02.042

    44. [44]

      Tycova A., Vido M., Kovarikova P., Foret F.. Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization Analysis of dexrazoxane in blood plasma[J]. J. Chromatogr. A, 2016,1466:173-179. doi: 10.1016/j.chroma.2016.08.042

    45. [45]

      Kammeijer G.S.M., Kohler I., Jansen B.C.. Dopant enriched nitrogen gas combined with sheathless capillary electrophoresis-electrospray ionizationmass spectrometryfor improved sensitivity and repeatability in glycopeptide analysis[J]. Anal. Chem., 2016,88:5849-5856. doi: 10.1021/acs.analchem.6b00479

    46. [46]

      Zhong X., Zhang Z., Jiang S., Li L.. Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS[J]. Electrophoresis, 2014,35:1214-1225. doi: 10.1002/elps.v35.9

    47. [47]

      Biacchi M., Bhajun R., Said N.. Analysis of monoclonal antibody by a novel CE-UV/MALDI-MS interface[J]. Electrophoresis, 2014,35:2986-2995. doi: 10.1002/elps.201400276

    48. [48]

      Tomalova I., Foltynova P., Kanicky V., Preisler J.. MALDI MS and ICP MS detection of a single CE separation record:a tool for metalloproteomics[J]. Anal. Chem., 2014,86:647-654. doi: 10.1021/ac402941e

    49. [49]

      Springer V., Jacksen J., Ek P., Lista A.G., Emmer A.. Capillary electrophoretic determination of fluoroquinolones in bovine milk followed by off-line malditof-ms analysis[J]. Chromatographia, 2015,78:285-290. doi: 10.1007/s10337-014-2823-5

    50. [50]

      Chen H.-X., Busnel J.-M., Qiao L.. Compatible buffer for capillary electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Method, 2013,5:4258-4262. doi: 10.1039/c3ay40397a

    51. [51]

      Timerbaev A.R., Pawlak K., Aleksenko S.S.. Advances of CE-ICP-MS in speciation analysis related to metalloproteomics of anticancer drugs[J]. Talanta, 2012,102:164-170. doi: 10.1016/j.talanta.2012.07.031

    52. [52]

      Liu L., He B., Yun Z., Sun J., Jiang G.. Speciation analysis of arsenic compounds by capillary electrophoresis on-line coupled with inductivelycoupled plasma mass spectrometry using a novel interface[J]. J. Chromatogr. A, 2013,1304:227-233. doi: 10.1016/j.chroma.2013.07.034

    53. [53]

      Liu L., Yun Z., He B., Jiang G.. Efficient interface for online coupling of capillary electrophoresis with inductively coupled plasma-mass spectrometry and its application in simultaneous speciation analysis of arsenic and selenium[J]. Anal. Chem., 2014,86:8167-8175. doi: 10.1021/ac501347d

    54. [54]

      Liu L., He B., Liu Q.. Identification and accurate size characterization of nanoparticles in complex media[J]. Angew. Chem. In. Edit., 2014,53:14476-14479. doi: 10.1002/anie.201408927

    55. [55]

      Kovachev N., Angel Aguirre M., Hidalgo M.. Elemental speciation by capillary electrophoresis with inductively coupled plasma spectrometry:a new approach by Flow Focusing (R) nebulization[J]. Microchem. J., 2014,117:27-33. doi: 10.1016/j.microc.2014.06.005

    56. [56]

      Nakamoto D., Tanaka M.. Speciation of aluminum by CE-ESI-MS and CE-ICPMS[J]. Bunseki Kagaku, 2014,63:383-390. doi: 10.2116/bunsekikagaku.63.383

    57. [57]

      Qu H., Mudalige T.K., Linder S.W.. Capillary electrophoresis/inductivelycoupled plasma-mass spectrometry:development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements[J]. Anal. Chem., 2014,86:11620-11627. doi: 10.1021/ac5025655

    58. [58]

      Qu H., Mudalige T.K., Linder S.W.. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry:enzymeassisted water-phase microwave digestion[J]. J. Agric. Food Chem., 2015,63:3153-3160. doi: 10.1021/acs.jafc.5b00446

    59. [59]

      Chen Y., Chen J., Xi Z.. Simultaneous analysis of Cr(Ⅲ), Cr(Ⅳ), and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Electrophoresis, 2015,36:1208-1215. doi: 10.1002/elps.v36.9-10

    60. [60]

      Chen Y., Huang L., Wu W.. Speciation analysis of lead in marine animals by using capillary electrophoresis couple online with inductively coupled plasma mass spectrometry[J]. Electrophoresis, 2014,35:1346-1352. doi: 10.1002/elps.v35.9

    61. [61]

      Yang M., Wu W., Ruan Y.. Ultra-sensitive quantification of lysozyme based on element chelate labeling and capillary electrophoresis inductively coupled plasma mass spectrometry[J]. Anal. Chim. Acta, 2014,812:12-17. doi: 10.1016/j.aca.2014.01.003

    62. [62]

      Brunel B., Philippini V., Mendes M., Aupiais J.. Actinide oxalate complexes formation as a function of temperature by capillary electrophoresis coupled with inductively coupled plasma mass spectrometry[J]. Radiochim. Acta, 2015,103:27-37.

    63. [63]

      Kautenburger R., Hein C., Sander J.M., Beck H.P.. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS[J]. Anal. Chim. Acta, 2014,816:50-59. doi: 10.1016/j.aca.2014.01.044

    64. [64]

      Stern J.C., Foustoukos D.I., Sonke J.E., Salters V.J.M.. Humic acid complexation of Th, Hf and Zr in ligand competition experiments:metal loading and pH effects[J]. Chem. Geo., 2014,363:241-249. doi: 10.1016/j.chemgeo.2013.11.001

    65. [65]

      Aleksenko S.S., Matczuk M., Lu X.. Metallomics for drug development:an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(Ⅲ) drug bound to holo-transferrin in simulated cancer cytosol[J]. Metallomics, 2013,5:955-963. doi: 10.1039/c3mt00092c

    66. [66]

      Matczuk M., Przadka M., Aleksenko S.S.. Metallomics for drug development:a further insight into intracellular activation chemistry of a ruthenium(iii)-based anticancer drug gained using a multidimensional analytical approach[J]. Metallomics, 2014,6:147-153. doi: 10.1039/C3MT00252G

    67. [67]

      Nguyen T.T.T.N., Ostergaard J., Sturup S., Gammelgaard B.. Determination of platinum drug releaseand liposome stability inhumanplasma by CE-ICP-MS[J]. Int. J. Pharm., 2013,449:95-102. doi: 10.1016/j.ijpharm.2013.03.055

    68. [68]

      Nguyen T.T.T.N., Ostergaard J., Sturup S., Gammelgaard B.. Metallomics in drug development:characterization of a liposomal cisplatin drug formulation in human plasma by CE-ICP-MS[J]. Anal. Bioanal. Chem., 2013,405:1845-1854. doi: 10.1007/s00216-012-6355-2

    69. [69]

      Chen F., Zheng L., Han L.. Analysis of arsenic species in dry seafood products by capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Sci. Tech. Food Indus., 2014,35:304-307.  

    70. [70]

      Vacchina V., Ionescu C., Oguey S., Lobinski R.. Determination of Zn-, Cu-and Mn-glycinate complexes in feed samples and in-vitro and in-vivo assays to assess their bioaccessibility in feed samples[J]. Talanta, 2013,113:14-18. doi: 10.1016/j.talanta.2013.03.083

    71. [71]

      Cheng Y.-J., Huang S.-H., Chiu J.-Y., Liu W.-L., Huang H.-Y.. Analyses of polycyclic aromatic hydrocarbons in seafood by capillary electrochromatography-atmospheric pressure chemical ionization/mass spectrometry[J]. J. Chromatogr. A, 2013,1313:132-138. doi: 10.1016/j.chroma.2013.08.035

    72. [72]

      Chang C., Xu G., Bai Y.. Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry[J]. Anal. Chem., 2013,85:170-176. doi: 10.1021/ac303450v

    73. [73]

      Zhang Y.D., Ai W.P., Bai Y.. An interface for online coupling capillary electrophoresis to dielectric barrier discharge ionization mass spectrometry[J]. Anal. Bioanal. Chem., 2016,408:8655-8661. doi: 10.1007/s00216-016-9822-3

    74. [74]

      Pejchinovski M., Hrnjez D., Ramirez-Torres A.. Capillary zone electrophoresis on-line coupled to mass spectrometry:a perspective application for clinical proteomics[J]. Proteom. Clin. Appl., 2015,9:453-468. doi: 10.1002/prca.v9.5-6

    75. [75]

      Sun L., Knierman M.D., Zhu G., Dovichi N.J.. Fast top-down intact protein characterization with capillary zone electrophoresis-electrospray ionization tandem mass spectrometry[J]. Anal. Chem., 2013,85:5989-5995. doi: 10.1021/ac4008122

    76. [76]

      Sun L., Zhu G., Dovichi N.J.. Integrated capillary zone electrophoresis-electrospray ionization tandem mass spectrometry system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate[J]. Anal. Chem, 2013,85:4187-4194. doi: 10.1021/ac400523x

    77. [77]

      Zhao Y., Sun L., Champion M.M., Knierman M.D., Dovichi N.J.. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for topdown characterization of the mycobacterium marinum secretome[J]. Anal. Chem., 2014,86:4873-4878. doi: 10.1021/ac500092q

    78. [78]

      Sun L., Hebert A.S., Yan X.. Over 10000 peptide identifications from the hela proteome by using single-shot capillary zone electrophoresis combined with tandem mass spectrometry[J]. Angew. Chem. Int. Edit., 2014,53:13931-13933. doi: 10.1002/anie.201409075

    79. [79]

      Sun L., Zhu G., Mou S.. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for quantitative parallel reaction monitoring of peptide abundance and single-shot proteomic analysis of a human cell line[J]. J. Chromatogr. A, 2014,1359:303-308. doi: 10.1016/j.chroma.2014.07.024

    80. [80]

      Sun L., Zhu G., Yan X., Champion M.M., Dovichi N.J.. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface[J]. Proteomics, 2014,14:622-628. doi: 10.1002/pmic.v14.4-5

    81. [81]

      Sun L., Zhu G., Yan X., Dovichi N.J.. High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes[J]. Curr. Opin. Chem. Bio., 2013,17:795-800. doi: 10.1016/j.cbpa.2013.07.018

    82. [82]

      Sun L., Zhu G., Zhang Z., Mou S., Dovichi N.J.. Third-Generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests[J]. J. Proteom. Res., 2015,14:2312-2321. doi: 10.1021/acs.jproteome.5b00100

    83. [83]

      Zhang Z., Sun L., Zhu G., Yan X., Dovichi N.J.. Integrated strong cationexchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry[J]. Talanta, 2015,138:117-122. doi: 10.1016/j.talanta.2015.01.040

    84. [84]

      Zhu G., Sun L., Yan X., Dovichi N.J.. Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1250 escherichia coli peptide identifications in a 50min separation[J]. Anal. Chem., 2013,85:2569-2573. doi: 10.1021/ac303750g

    85. [85]

      Zhu G., Sun L., Yan X., Dovichi N.J.. Stable reproducible, and automated capillary zone electrophoresis-tandem mass spectrometry system with an electrokinetically pumped sheath-flow nanospray interface[J]. Anal. Chim. Acta, 2014,810:94-98. doi: 10.1016/j.aca.2013.11.057

    86. [86]

      Ludwig K.R., Sun L.L., Zhu G.J., Dovichi N.J., Hummon A.B.. Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100min separation[J]. Anal. Chem., 2015,87:9532-9537. doi: 10.1021/acs.analchem.5b02457

    87. [87]

      Peuchen E.H., Zhu G.J., Sun L.L., Dovichi N.J.. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system[J]. Anal. Bioanal. Chem., 2017,409:1789-1795. doi: 10.1007/s00216-016-0122-8

    88. [88]

      Sarver S.A., Schiavone N.M., Arceo J.. Capillary electrophoresis coupled to negative mode electrospray ionization mass spectrometry using an electrokinetically-pumped nanospray interface with primary amines grafted to the interior of a glass emitter[J]. Talanta, 2017,165:522-525. doi: 10.1016/j.talanta.2017.01.002

    89. [89]

      Moini M., Martinez B.. Ultrafast capillary electrophoresis/mass spectrometry with adjustable porous tip for a rapid analysis of protein digest in about a minute[J]. Rapid Commun. Mass Spectrom., 2014,28:305-310. doi: 10.1002/rcm.6786

    90. [90]

      Moini M., Rollman C.M.. Compatibility of highly sulfated cyclodextrin with electrospray ionization at low nanoliter/minute flow rates and its application to capillary electrophoresis/electrospray ionization mass spectrometric analysis of cathinone derivatives and their optical isomers[J]. Rapid Commun. Mass Spectrom., 2015,29:304-310. doi: 10.1002/rcm.7106

    91. [91]

      He M., Xue Z., Zhang Y.. Development and characterizations of a miniature capillary electrophoresis mass spectrometry system[J]. Anal. Chem., 2015,87:2236-2241. doi: 10.1021/ac504868w

    92. [92]

      Moini M., Rollman C.M.. Portable, battery operated capillary electrophoresis with optical isomer resolution integrated with ionization source for mass spectrometry[J]. J. Am. Soc. Mass Spectrom., 2016,27:388-393. doi: 10.1007/s13361-015-1314-8

    93. [93]

      Bergstrom T., Fredriksson S.-A., Nilsson C., Astot C.. Deamidation in ricin studied by capillary zone electrophoresis-and liquid chromatography-mass spectrometry[J]. J. Chromatogr. B-Anal. Tech. Biomed. Life Sci., 2015,974:109-117. doi: 10.1016/j.jchromb.2014.10.015

    94. [94]

      Kohl F.J., Montealegre C., Neususs C.. On-line two-dimensional capillary electrophoresis with mass spectrometric detection using a fully electric isolated mechanical valve[J]. Electrophoresis, 2016,37:954-958. doi: 10.1002/elps.201500579

    95. [95]

      Nordman N., Barrios-Lopez B., Lauren S.. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry[J]. Electrophoresis, 2015,36:428-432. doi: 10.1002/elps.201400278

    96. [96]

      Ollikainen E., Bonabi A., Nordman N.. Rapid separation of phosphopeptides by microchip electrophoresis-electrospray ionization mass spectrometry[J]. J. Chromatogr. A, 2016,1440:249-254. doi: 10.1016/j.chroma.2016.02.063

    97. [97]

      Tahka S.M., Bonabi A., Jokinen V.P., Sikanen T.M.. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices[J]. J. Chromatogr. A, 2017,1496:150-156. doi: 10.1016/j.chroma.2017.03.018

    98. [98]

      Mellors J.S., Black W.A., Chambers A.G.. Hybrid capillary/microfluidic system for comprehensive online liquid chromatography-capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Anal. Chem., 2013,85:4100-4106. doi: 10.1021/ac400205a

    99. [99]

      Black W.A., Stocks B.B., Mellors J.S., Engen J.R., Ramsey J.M.. Utilizing microchip capillary electrophoresis electrospray ionization for hydrogen exchange mass spectrometry[J]. Anal. Chem., 2015,87:6280-6287. doi: 10.1021/acs.analchem.5b01179

    100. [100]

      Redman E.A., Batz N.G., Mellors J.S., Ramsey J.M.. Integrated microfluidic capillary electrophoresis-electrospray ionization devices with online ms detection for the separation and characterization of intact monoclonal antibody variants[J]. Anal. Chem., 2015,87:2264-2272. doi: 10.1021/ac503964j

    101. [101]

      Redman E.A., Mellors J.S., Starkey J.A., Ramsey J.M.. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis-mass spectrometry[J]. Anal. Chem., 2016,88:2220-2226. doi: 10.1021/acs.analchem.5b03866

    102. [102]

      Batz N.G., Mellors J.S., Alarie J.P., Ramsey J.M.. Chemical vapor deposition of aminopropyl si lanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Anal. Chem., 2014,86:3493-3500. doi: 10.1021/ac404106u

    103. [103]

      Mikuma T., Iwata Y.T., Miyaguchi H.. The use of a sulfonated capillary on chiral capillary electrophoresis/mass spectrometry of amphetamine-type stimulants for methamphetamine impurity profiling[J]. Forensic Sci. Int., 2015,249:59-65. doi: 10.1016/j.forsciint.2015.01.015

    104. [104]

      Li X.T., Hu H.K., Zhao S.L., Liu Y.M.. Microfluidic platform with in-chip electrophoresis coupled tomass spectrometry for monitoring neurochemical release from nerve cells[J]. Anal. Chem., 2016,88:5338-5344. doi: 10.1021/acs.analchem.6b00638

    105. [105]

      Li X.T., Zhao S.L., Hu H.K., Liu Y.M.. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis[J]. J. Chromatogr. A, 2016,1451:156-163. doi: 10.1016/j.chroma.2016.05.015

    106. [106]

      Fujii S.-i., Inagaki K., Miyashita S.-i.. A coupling system of capillary gel electrophoresis with inductively coupled plasma-mass spectrometry for the determination of double stranded DNA fragments[J]. Metallomics, 2013,5:424-428. doi: 10.1039/c3mt00057e

    107. [107]

      Wang C., Lee C.S., Smith R.D., Tang K.. Ultrasensitive sample quantitation via selected reaction monitoring using citp/cze-esi-triple quadrupole MS[J]. Anal. Chem., 2012,84:10395-10403. doi: 10.1021/ac302616m

    108. [108]

      Wang C., Lee C.S., Smith R.D., Tang K.. Capillary lsotachophoresis-nanoelectrospray ionization-selected reaction monitoring ms via a novel sheath less interface for high sensitivity sample quantification[J]. Anal. Chem., 2013,85:7308-7315. doi: 10.1021/ac401202c

    109. [109]

      Guo X.J., Fillmore T.L., Gao Y.Q., Tang K.Q.. Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification[J]. Anal. Chem, 2016,88:4418-4425. doi: 10.1021/acs.analchem.5b04912

    110. [110]

      Kler P.A., Posch T.N., Pattky M., Tiggelaar R.M., Huhn C.. Column coupling isotachophoresis-capillary electrophoresis with mass spectrometric detection:characterization and optimization of microfluidic interfaces[J]. J. Chromatogr. A, 2013,1297:204-212. doi: 10.1016/j.chroma.2013.04.046

    111. [111]

      Kler P.A., Huhn C.. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS[J]. Anal. Bioanal. Chem., 2014,406:7163-7174. doi: 10.1007/s00216-014-8152-6

    112. [112]

      Piestansky J., Marakova K., Koval M., Mikus P.. Comparison of hydrodynamically closed isotachophoresis-capillary zone electrophoresis with hydrodynamically open capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis:pheniramine, its metabolite and phenylephrine in human urine[J]. J. Chromatogr. A, 2014,1358:285-292. doi: 10.1016/j.chroma.2014.06.083

    113. [113]

      Piestansky J., Marakova K., Veizerova L., Galba J., Mikus P.. On-line column coupled isotachophoresis-capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis:varenicline and its metabolite in human urine[J]. Anal. Chim. Acta, 2014,826:84-93. doi: 10.1016/j.aca.2014.04.003

    114. [114]

      Piest J., ansky ', Marakova K., Koval M., Havranek E., Mikus P.. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples[J]. Electrophoresis, 2015,36:3069-3079. doi: 10.1002/elps.201500351

    115. [115]

      Marak J., Stanova A.. Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry[J]. Electrophoresis, 2014,35:1268-1274. doi: 10.1002/elps.v35.9

    116. [116]

      Mala Z., Pantuckova P., Gebauer P., Bocek P.. Advanced electrolyte tuning and selectivity enhancement for highly sensitive analysis of cations by capillary ITP-ESI MS[J]. Electrophoresis, 2013,34:777-784. doi: 10.1002/elps.201200533

    117. [117]

      Gahoual R., Busnel J.-M., Beck A., Francois Y.-N., Leize-Wagner E.. Full antibody primary structure and microvariant characterization in a single injection using transient isotachophoresis and sheathless capillary electrophoresis-tandem mass spectrometry[J]. Anal. Chem, 2014,86:9074-9081. doi: 10.1021/ac502378e

    118. [118]

      He Y., Harir M., Chen G.. Capillary electrokinetic fractionation mass spectrometry (CEkF/MS):technology setup and application to metabolite fractionation from complex samples coupled at-line with ultrahighresolution mass spectrometry[J]. Electrophoresis, 2014,35:1965-1975. doi: 10.1002/elps.201400041

    119. [119]

      Huhner J., Lammerhofer M., Neususs C.. Capillary isoelectric focusing-mass spectrometry:coupling strategies and applications[J]. Electrophoresis, 2015,36:2670-2686. doi: 10.1002/elps.201500185

    120. [120]

      Huhner J., Jooss K., Neusubb C.. Interference-free mass spectrometric detection of capillary isoelectric focused proteins, including charge variants of a model monoclonal antibody[J]. Electrophoresis, 2017,38:914-921. doi: 10.1002/elps.201600457

    121. [121]

      Zhu G., Sun L., Keithley R.B., Dovichi N.J.. Capillary lsoelectric focusingtandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating pc12 cells by eight-plex isobaric tags for relative and absolute quantification[J]. Anal. Chem., 2013,85:7221-7229. doi: 10.1021/ac4009868

    122. [122]

      Zhu G., Sun L., Wojcik R.. A rapid cIEF-ESI-MS/MS method for host cell protein analysis of a recombinant human monoclonal antibody[J]. Talanta, 2012,98:253-256. doi: 10.1016/j.talanta.2012.07.017

    123. [123]

      Zhu G., Sun L., Yang P., Dovichi N.J.. On-line amino acid-based capillary isoelectric focusing-ESI-MS/MS for protein digests analysis[J]. Anal. Chim. Acta, 2012,750:207-211. doi: 10.1016/j.aca.2012.04.026

    124. [124]

      Li S., Guo C.-G., Chen L.. Impact of glutathione-HbA(1c) on HbA(1c) measurement in diabetes diagnosis via array isoelectric focusing liquid chromatography, mass spectrometry and ELISA[J]. Talanta, 2013,115:323-328. doi: 10.1016/j.talanta.2013.05.040

    125. [125]

      Przybylski C., Mokaddem M., Prull-Janssen M.. On-line capillary isoelectric focusing hyphenated to native electrospray ionization mass spectrometry for the characterization of interferon-gamma and variants[J]. Analyst, 2015,140:543-550. doi: 10.1039/C4AN01305K

    126. [126]

      Horka M., Karasek P., Salplachta J.. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with offline matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification[J]. Anal. Chim. Acta, 2013,788:193-199. doi: 10.1016/j.aca.2013.05.059

    127. [127]

      Horka M., Salplachta J., Karasek P.. Combination of capillary isoelectric focusing in a tapered capillary with MALDI-TOF MS for rapid and reliable identification of dickeya species from plant samples[J]. Anal. Chem., 2013,85:6806-6812. doi: 10.1021/ac4009176

    128. [128]

      Nordman N., Lauren S., Kotiaho T.. Interfacing microchip isoelectric focusing with on-chip electrospray ionization mass spectrometry[J]. J. Chromatogr. A, 2015,1398:121-126. doi: 10.1016/j.chroma.2015.04.031

    129. [129]

      Zhang Z., Wang J., Hui L., Li L.. Poly(glycidyl methacrylate-divinylbenzene) based immobilized pH gradient capillary isoelectric focusing coupling with MALDI mass spectrometry for enhanced neuropeptide analysis[J]. Electrophoresis, 2012,33:661-665. doi: 10.1002/elps.201100447

    130. [130]

      Tiala H., Riekkola M.-L., Wiedmer S.K.. Study on capillaries covalently bound with phospholipid vesicles for open-tubular CEC and application to on-line open-tubular CEC-MS[J]. Electrophoresis, 2013,34:3180-3188. doi: 10.1002/elps.v34.22-23

    131. [131]

      Bragg W., Shamsi S.A.. High throughput analysis of chiral compounds using capillary electrochromatography (CEC) and CEC-mass spectrometry with cellulose based stationary phases[J]. Sep. Sci. Tech., 2013,48:2589-2599. doi: 10.1080/01496395.2012.719984

    132. [132]

      Orazio G. D', Fanali S.. Pressurized nano-liquid-junction interface for coupling capillary electrochromatography and nano-liquid chromatography with mass spectrometry[J]. J. Chromatogr. A, 2013,1317:67-76. doi: 10.1016/j.chroma.2013.08.052

    133. [133]

      Wu Q., Yu X.W., Wang Y.. Pressurized CEC coupled with QTOF-MS for urinary metabolomics[J]. Electrophoresis, 2014,35:2470-2478. doi: 10.1002/elps.v35.17

    134. [134]

      Simpson D.C., Yates A.J., Knox J.H., Langridge-Smith P.R.R.. A novel two-laser interface for coupling capillary electrochromatography with ion-trap timeof-flight mass spectrometry[J]. Int. J. Mass Spectrom., 2014,363:8-15. doi: 10.1016/j.ijms.2014.02.005

    135. [135]

      Orazio G. D', Asensio-Ramos M., Hernandez-Borges J., Fanali S., Angel Rodriguez-Delgado M.. Estrogenic compounds determination in water samples by dispersive liquid-liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry[J]. J. Chromatogr. A, 2014,1344:109-121. doi: 10.1016/j.chroma.2014.04.005

    136. [136]

      Orazio G. D', Asensio-Ramos M., Hernandez-Borges J., Angel RodriguezDelgado M., Fanali S.. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt[J]. Electrophoresis, 2015,36:615-625. doi: 10.1002/elps.v36.4

    137. [137]

      Svidrnoch M., Lnenickova L., Valka I., Ondra P., Maier V.. Utilization of micellar electrokinetic chromatography-tandem mass spectrometry employed volatile micellar phase in the analysis of cathihone designer drugs[J]. J. Chromatogr. A, 2014,1356:258-265. doi: 10.1016/j.chroma.2014.06.058

    138. [138]

      Akamatsu S., Mitsuhashi T.. MEKC-MS/MS method using a volatile surfactant for the simultaneous determination of 12 synthetic cannabinoids[J]. J. Sep. Sci., 2014,37:304-307. doi: 10.1002/jssc.v37.3

    139. [139]

      Moreno-Gonzalez D., Torano J.S., Gamiz-Gracia L.. Micellar electrokinetic chromatography-electrospray ionization mass spectrometry employing a volatile surfactant for the analysis of amino acids in human urine[J]. Electrophoresis, 2013,34:2615-2622. doi: 10.1002/elps.v34.18

    140. [140]

      Wang X., Hou J., Jann M., Hon Y.Y., Shamsi S.A.. Development of a chiral micellar electrokinetic chromatography-tandem mass spectrometry assay for simultaneous analysis of warfarin and hydroxywarfarin metabolites: application to the analysis of patients serum samples[J]. J. Chromatogr. A, 2013,1271:207-216. doi: 10.1016/j.chroma.2012.11.046

    141. [141]

      Franze B., Engelhard C.. Fast separation characterization, and speciation of gold and silver nanoparticles and their ionic counterparts with micellar electrokinetic chromatography coupled to ICP-MS[J]. Anal. Chem., 2014,86:5713-5720. doi: 10.1021/ac403998e

    142. [142]

      Rodriguez J., Castaneda G., Munoz L.. Direct determination of pregabalin in human urine by nonaqueous CE-TOF-MS[J]. Electrophoresis, 2013,34:1429-1436. doi: 10.1002/elps.v34.9-10

    143. [143]

      Rodriguez J., Castaneda G., Munoz L., Villa J.C.. Quantitation of sunitinib, an oral multitarget tyrosine kinase inhibitor, and its metabolite in urine samples by nonaqueous capillary electrophoresis time of flight mass spectrometry[J]. Electrophoresis, 2015,36:1580-1587. doi: 10.1002/elps.v36.14

    144. [144]

      Zhang Y., Chen Z.. Nonaqueous CE ESI-IT-MS analysis of amaryllidaceae alkaloids[J]. J. Sep. Sci., 2013,36:1078-1084. doi: 10.1002/jssc.201201083

    145. [145]

      Zhang J., Chen Z.. Determination of matrine and oxymatrine in sophora flavescens by nonaqueous capillary electrophoresis-electrospray ionizationion trap-mass spectrometry[J]. Analy. Lett., 2013,46:651-662. doi: 10.1080/00032719.2012.726684

    146. [146]

      Chen Q., Zhang J., Zhang W., Chen Z.. Analysis of active alkaloids in the Menispermaceae family by nonaqueous capillary electrophoresis-ion trap mass spectrometry[J]. J. Sep. Sci., 2013,36:341-349. doi: 10.1002/jssc.201200678

    147. [147]

      Bonvin G., Schappler J., Rudaz S.. Non-aqueous capillary electrophoresis for the analysis of acidic compounds using negative electrospray ionization mass spectrometry[J]. J. Chromatogr. A, 2014,1323:163-173. doi: 10.1016/j.chroma.2013.11.011

    148. [148]

      Tho Chau D., Minh Vinh , Tuan Duc N., Hung T., Stuppner H., Ganzera M.. Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by nonaqueous capillary electrophoresis using ultraviolet and mass spectrometric detection[J]. J. Chromatography A, 2013,1302:174-180. doi: 10.1016/j.chroma.2013.06.002

    149. [149]

      Montealegre C., Sanchez-Hernandez L., Crego A.L., Marina M.L.. Determination and characterization of glycerophospholipids in olive fruit and oil by nonaqueous capillary electrophoresis with electrospray-mass spectrometric detection[J]. J. Agric. Food Chem., 2013,61:1823-1832. doi: 10.1021/jf304357e

    150. [150]

      Roscher J., Faber H., Stoffels M.. Nonaqueous capillary electrophoresis as separation technique to support metabolism studies by means of electrochemistry and mass spectrometry[J]. Electrophoresis, 2014,35:2386-2391. doi: 10.1002/elps.v35.16

    151. [151]

      Malik A.K., Grundmann M., Matysik F.-M.. Development of a fast capillary electrophoresis-time-of-flight mass spectrometry method for the speciation of organotin compounds under separation conditions of high electrical field strengths[J]. Talanta, 2013,116:559-562. doi: 10.1016/j.talanta.2013.07.025

    152. [152]

      Bonvin G., Rudaz S., Schappler J.. In-spray supercharging of intact proteins by capillary electrophoresis-electrospray ionization-mass spectrometry using sheath liquid interface[J]. Anal. Chim. Acta, 2014,813:97-105. doi: 10.1016/j.aca.2013.12.043

    153. [153]

      Mateos-Vivas M., Rodriguez-Gonzalo E., Dominguez-Alvarez J.. Analysis of free nucleotide monophosphates in human milk and effect of pasteurisation or high-pressure processing on their contents by capillary electrophoresis coupled to mass spectrometry[J]. Food Chem, 2015,174:348-355. doi: 10.1016/j.foodchem.2014.11.051

    154. [154]

      Rodriguez-Gonzalo E., Hernandez-Prieto R., Garcia-Gomez D., CarabiasMartinez R.. Capillary electrophoresis-mass spectrometry for direct determination of urinary modified nucleosides. Evaluation of synthetic urine as a surrogate matrix for quantitative analysis[J]. J. Chromatogr. B-Anal. Tech. Biomed. Life Sci, 2013,942:21-30.  

    155. [155]

      Bustamante-Rangel M., Delgado-Zamarreno M.M., Perez-Martin L., Carabias-martinez R.. QuEChERS method for the extraction of isoflavones from soy-based foods before determination by capillary electrophoresis-electrospray ionization-mass spectrometry[J]. Microchem. J, 2013,108:203-209. doi: 10.1016/j.microc.2012.10.023

    156. [156]

      Marakova K., Piestansky J., Havranek E., Mikus P.. Simultaneous analysis of vitamins B in pharmaceuticals and dietary supplements by capillary electrophoresis hyphenated with triple quadrupole mass spectrometry[J]. Pharmazie, 2014,69:663-668.  

    157. [157]

      Marakova K., Piest J., ansky ', Veizerova L.. Multidrug analysis of pharmaceutical and urine matrices by on-line coupled capillary electrophoresis and triple quadrupole mass spectrometry[J]. J. Sep. Sci., 2013,36:1805-1816. doi: 10.1002/jssc.v36.11

    158. [158]

      Jayo R.G., Thaysen-Andersen M., Lindenburg P.W.. Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface[J]. Anal. Chem., 2014,86:6479-6486. doi: 10.1021/ac5010212

    159. [159]

      Ginterova P., Sokolova B., Ondra P.. Determination of mushroom toxins ibotenic acid, muscimol and muscarine by capillary electrophoresis coupled with electrospray tandem mass spectrometry[J]. Talanta, 2014,125:242-247. doi: 10.1016/j.talanta.2014.03.019

    160. [160]

      Kondekova M., Maier V., Ginterova P., Marak J., Sevcik J.. Analysis of lysozyme in cheese samples by on-line combination of capillary zone electrophoresis and mass spectrometry[J]. Food Chem., 2014,153:398-404. doi: 10.1016/j.foodchem.2013.12.078

    161. [161]

      Daniel D., dos Santos V.B., Vidal D.T.R., do Lago C.L.. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry[J]. J. Chromatogr. A, 2015,1416:121-128. doi: 10.1016/j.chroma.2015.08.065

    162. [162]

      Ortiz-Villanueva E., Benavente F., Gimenez E., Yilmaz F., Sanz-Nebot V.. Preparation and evaluation of open tubular C18-silica monolithic microcartridges for preconcentration of peptides by on-line solid phase extraction capillary electrophoresis[J]. Anal. Chim. Acta, 2014,846:51-59. doi: 10.1016/j.aca.2014.06.046

    163. [163]

      Dong Y.-M., Chien K.-Y., Chen J.-T.. Site-specific separationand detection of phosphopeptide isomers with pH-mediated stacking capillary electrophoresis-electrospray ionization-tandem mass spectrometry[J]. J. Sep. Sci., 2013,36:1582-1589. doi: 10.1002/jssc.201300054

    164. [164]

      Prior A., Sanchez-Hernandez L., Sastre-Torano J., Marina M.L., de Jong G.J., Somsen G. W.. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis-mass spectrometry[J]. Electrophoresis, 2016,37:2410-2419. doi: 10.1002/elps.v37.17-18

    165. [165]

      Tascon M., Benavente F., Sanz-Nebot V.M., Gagliardi L.G.. Fast determination of harmala alkaloids in edible algae by capillary electrophoresis mass spectrometry[J]. Anal. Bioanal. Chem., 2015,407:3637-3645. doi: 10.1007/s00216-015-8579-4

    166. [166]

      Moreno-Gonzalez D., Lara F.J., Jurgovska N., Gamiz-Gracia L., GarciaCampana A.M.. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers[J]. Anal. Chim. Acta, 2015,891:321-328. doi: 10.1016/j.aca.2015.08.003

    167. [167]

      Warren C.R.. High diversity of small organic Nobserved in soil water[J]. Soil Biol. Biochem., 2013,57:444-450. doi: 10.1016/j.soilbio.2012.09.025

    168. [168]

      Warren C.R.. Response of organic N monomers in a sub-alpine soil to a drywet cycle[J]. Soil Biol. Biochem., 2014,77:233-242. doi: 10.1016/j.soilbio.2014.06.028

    169. [169]

      Marie A.-L., Przybylski C., Gonnet F.. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin[J]. Anal. Chim. Acta, 2013,800:103-110. doi: 10.1016/j.aca.2013.09.023

    170. [170]

      Ma Lopez-Montes A., Dupont A.-L., Desmazieres B., Lavedrine B.. Identification of synthetic dyes in early colour photographs using capillary electrophoresis and electrospray ionisation-mass spectrometry[J]. Talanta, 2013,114:217-226. doi: 10.1016/j.talanta.2013.04.020

    171. [171]

      Causon T.J., Maringer L., Buchberger W., Klampfl C.W.. Addition of reagents to the sheath liquid:a novel concept in capillary electrophoresis-mass spectrometry[J]. J. Chromatogr. A, 2014,1343:182-187. doi: 10.1016/j.chroma.2014.04.002

    172. [172]

      Medina-Casanellas S., Benavente F., Barbosa J., Sanz-Nebot V.. Preparation and evaluation of an immunoaffinity sorbent with Fab' antibody fragments for the analysis of opioid peptides by on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry[J]. Anal. Chim. Acta, 2013,789:91-99. doi: 10.1016/j.aca.2013.06.030

    173. [173]

      Barroso A., Gimenez E., Benavente F., Barbosa J., Sanz-Nebot V.. Analysis of human transferrin glycopeptides by capillary electrophoresis and capillary liquid chromatography-mass spectrometry. Application to diagnosis of alcohol dependence[J]. Anal. Chim. Acta, 2013,804:167-175. doi: 10.1016/j.aca.2013.09.044

    174. [174]

      Barroso A., Gimenez E., Benavente F., Barbosa J., Sanz-Nebot V.. Modelling the electrophoretic migration behaviour of peptides and glycopeptides from glycoprotein digests in capillary electrophoresis-mass spectrometry[J]. Anal. Chim. Acta, 2015,854:169-177. doi: 10.1016/j.aca.2014.10.038

    175. [175]

      Brueckner C., Imhof D., Scriba G.K.E.. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide GlyPhe-Asp-GlyOH in alkaline solution[J]. J. Pharm. Biomed. Anal, 2013,76:96-103. doi: 10.1016/j.jpba.2012.12.012

    176. [176]

      Catala-Clariana S., Benavente F., Gimenez E., Barbosa J., Sanz-Nebot V.. Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behavior[J]. Electrophoresis, 2013,34:1886-1894. doi: 10.1002/elps.201200547

    177. [177]

      Haselberg R., de Jong G.J., Somsen G.W.. Low-flow sheathless capillary electrophoresis-mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins[J]. Anal. Chem., 2013,85:2289-2296. doi: 10.1021/ac303158f

    178. [178]

      Haselberg R., Oliveira S., van der Meel R., Somsen G.W., de Jong G.J.. Capillary electrophoresis-based assessment of nanobody affinity and purity[J]. Anal. Chim. Acta, 2014,818:1-6. doi: 10.1016/j.aca.2014.01.048

    179. [179]

      G. Klein, J. P. Schanstra, J. Hoffmann, et al. , Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products, PLoS One 8(2013).

    180. [180]

      Kohler I., Augsburger M., Rudaz S., Schappler J.. New insights in carbohydrate-deficient transferrin analysis with capillary electrophoresis-mass spectrometry[J]. Forensic Sci. In., 2014,243:14-22. doi: 10.1016/j.forsciint.2014.03.014

    181. [181]

      Pont L., Benavente F., Barbosa J., Sanz-Nebot V.. Analysis of transthyretin in human serum bycapillary zone electrophoresis electrospray ionization timeof-flight mass spectrometry. Application to familial amyloidotic polyneuropathy type I[J]. Electrophoresis, 2015,36:1265-1273. doi: 10.1002/elps.v36.11-12

    182. [182]

      Bertoletti L., Schappler J., Colombo R.. Evaluation of capillary electrophoresis-mass spectrometry for the analysis of the conformational heterogeneity of intact proteins using beta(2)-microglobulin as model compound[J]. Anal. Chim. Acta, 2016,945:102-109. doi: 10.1016/j.aca.2016.10.010

    183. [183]

      Han M., Rock B.M., Pearson J.T., Rock D.A.. Intact mass analysis of monoclonal antibodies by capillary electrophoresis-Mass spectrometry[J]. J. Chromatogr. BAnal. Tech. Biomed. Life Sci., 2016,1011:24-32. doi: 10.1016/j.jchromb.2015.12.045

    184. [184]

      Khan N., Mironov G., Berezovski M.V.. Direct detection of endogenous MicroRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal. Chem., 2016,408:2891-2899. doi: 10.1007/s00216-015-9277-y

    185. [185]

      Bunz S.-C., Cutillo F., Neusuess C.. Analysis of native and APTS-labeled Nglycans by capillary electrophoresis/time-of-flight mass spectrometry[J]. Anal. Bioanal. Chem., 2013,405:8277-8284. doi: 10.1007/s00216-013-7231-4

    186. [186]

      Bunz S.-C., Rapp E., Neusuess C.. Capillary electrophoresis/mass spectrometry of apts-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems[J]. Anal. Chem., 2013,85:10218-10224. doi: 10.1021/ac401930j

    187. [187]

      Weissinger E.M., Mullen W., Albalat A.. Urinary proteomics employing capillary electrophoresis coupled to mass spectrometry in the monitoring of patients after stem cell transplantation[J]. Methods Mol. Biol, 2014,1109:293-306. doi: 10.1007/978-1-4614-9437-9

    188. [188]

      Contreras-Gutierrez P.K., Hurtado-Fernandez E., Gomez-Romero M.. Determination of changes in the metabolic profile of avocado fruits (Persea americana) by two CE-MS approaches (targeted and non-targeted)[J]. Electrophoresis, 2013,34:2928-2942.

    189. [189]

      Garcia A., Naz S., Barbas C.. Metabolite fingerprinting by capillary electrophoresis-mass spectrometry[J]. Methods Mol. Biol., 2014,1198:107-123. doi: 10.1007/978-1-4939-1258-2

    190. [190]

      Godzien J., Garcia-Martinez D., Martinez-Alcazar P., Ruperez F.J., Barbas C.. Effect of a nutraceutical treatment on diabetic rats with targeted and CE-MS non-targeted approaches[J]. Metabolomics, 2013,9:S188-S202. doi: 10.1007/s11306-011-0351-y

    191. [191]

      Ibanez C., Simo C., Valdes A.. Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry:HT-29 cells as case study[J]. J. Pharm. Biomed. Anal., 2015,110:83-92. doi: 10.1016/j.jpba.2015.03.001

    192. [192]

      Kami K., Fujimori T., Sato H.. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry[J]. Metabolomics, 2013,9:444-453. doi: 10.1007/s11306-012-0452-2

    193. [193]

      Kok M.G.M., Ruijken M.M.A., Swann J.R.. Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry[J]. Anal. Bioanal Chem., 2013,405:2585-2594. doi: 10.1007/s00216-012-6701-4

    194. [194]

      Kok M.G.M., Somsen G.W., de Jong G.J.. Comparison of capillary electrophoresis-mass spectrometry and hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine[J]. Talanta, 2015,132:1-7. doi: 10.1016/j.talanta.2014.08.047

    195. [195]

      Kume S., Yamato M., Tamura Y.. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats[J]. PLoS One, 2015,10e0120106. doi: 10.1371/journal.pone.0120106

    196. [196]

      Kwon H.J., Ohmiya Y.. Metabolomic analysis of differential changes in metabolites during ATP oscillations in chondrogenesis[J]. BioMed Res. Int, 2013,2013213972.  

    197. [197]

      Muroya S., Oe M., Nakajima I., Ojima K., Chikuni K.. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles[J]. Meat Sci, 2014,98:726-735. doi: 10.1016/j.meatsci.2014.07.018

    198. [198]

      Naz S., Garcia A., Rusak M., Barbas C.. Method development and validation for rat serum fingerprinting with CE-MS:application to ventilator-inducedlung-injury study[J]. Anal. Bioanal. Chem., 2013,405:4849-4858. doi: 10.1007/s00216-013-6882-5

    199. [199]

      Tsuruoka M., Hara J., Hirayama A.. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients[J]. Electrophoresis, 2013,34:2865-2872.  

    200. [200]

      Zeng J., Kuang H., Hu C.. Effect of bisphenol a on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry[J]. Environ. Sci. Tech., 2013,47:7457-7465. doi: 10.1021/es400490f

    201. [201]

      Zeng J., Yin P., Tan Y.. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry[J]. J. Proteome Res, 2014,13:3420-3431. doi: 10.1021/pr500390y

    202. [202]

      Yamamoto H., Sasaki K.. Metabolomics-based approach for ranking the candidate structures of unidentified peaks in capillary electrophoresis timeof-flight mass spectrometry[J]. Electrophoresis, 2016,38:1053-1059.

    203. [203]

      Isbell T.A., Strickland E.C., Hitchcock J., McIntire G., Colyer C.L.. Capillary electrophoresis-mass spectrometry determination of morphine and its isobaric glucuronide metabolites[J]. J. Chromatogr. B-Anal. Tech. Biomed. Life Sci., 2015,980:65-71. doi: 10.1016/j.jchromb.2014.11.035

    204. [204]

      Merola G., Fu H., Tagliaro F., Macchia T., McCord B.R.. Chiral separation of 12 cathinone analogs bycyclodextrin-assisted capillary electrophoresis with UV and mass spectrometry detection[J]. Electrophoresis, 2014,35:3231-3241. doi: 10.1002/elps.v35.21-22

    205. [205]

      Wozniakiewicz A., Wietecha-Posluszny R., Wozniakiewicz M., Bryczek E., Koscielniak P.. A quick method for determination of psychoactive agents in serum and hair by using capillary electrophoresis and mass spectrometry[J]. J. Pharm. Biomed. Anal., 2015,111:177-185. doi: 10.1016/j.jpba.2015.03.029

    206. [206]

      Said N., Gahoual R., Kuhn L.. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis-Tandem mass spectrometry as nanoESI infusion platform and separation method[J]. Anal. Chim. Acta, 2016,918:50-59. doi: 10.1016/j.aca.2016.03.006

    207. [207]

      Kohler I., Schappler J., Rudaz S.. Highly sensitive capillary electrophoresismass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine[J]. Anal. Chim. Acta, 2013,780:101-109. doi: 10.1016/j.aca.2013.03.065

    208. [208]

      Kohler I., Schappler J., Sierro T., Rudaz S.. Dispersive liquid-liquid microextraction combined with capillary electrophoresis and time-offlight mass spectrometry for urine analysis[J]. J. Pharm. Biomed. Anal., 2013,73:82-89. doi: 10.1016/j.jpba.2012.03.036

    209. [209]

      van Wijk A.M., Niederlander H.A.G., van Ogten M.D., de Jong G.J.. Sensitive CEMS analysis of potentially genotoxic alkylation compounds using derivatization and electrokinetic injection[J]. Anal. Chim. Acta, 2015,874:75-83. doi: 10.1016/j.aca.2015.02.067

    210. [210]

      Chen J., Shi Q., Wang Y., Li Z., Wang S.. Dereplication of known nucleobase and nucleoside compounds in natural product extracts by capillary electrophoresis-high resolution mass spectrometry[J]. Molecules, 2015,20:5423-5437. doi: 10.3390/molecules20045423

    211. [211]

      Gusenkov S., Ackaert C., Stutz H.. Separation and characterization of nitrated variants of the major birch pollen allergen by CZE-ESI-mu TOF MS[J]. Electrophoresis, 2013,34:2695-2704. doi: 10.1002/elps.v34.18

    212. [212]

      Nemes P., Rubakhin S.S., Aerts J.T., Sweedler J.V.. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry[J]. Nat. Protoc., 2013,8:783-799. doi: 10.1038/nprot.2013.035

    213. [213]

      Causon T.J., Himmelsbach M., Buchberger W., Klampfl C.W.. Identification of polyimide materials using quantitative CE with UV and QTOF-MS detection[J]. Electrophoresis, 2013,34:944-949. doi: 10.1002/elps.201200525

    214. [214]

      Hintersteiner I., Himmelsbach M., Klampfl C., Buchberger W.W.. Characterization of hindered amine light stabilizers employing capillary electrophoresis coupled to quadrupole time-of-flight mass spectrometry[J]. Electrophoresis, 2014,35:1368-1374. doi: 10.1002/elps.v35.9

    215. [215]

      Kula A., Krol M., Wietecha-Posluszny R., Wozniakiewicz M., Koscielniak P.. Application of CE-MS to examination of black inkjet printing inks for forensic purposes[J]. Talanta, 2014,128:92-101. doi: 10.1016/j.talanta.2014.04.004

    216. [216]

      Nolte T., Posch T.N., Huhn C., Andersson J.T.. Desulfurized fuels from athabasca bitumen and their polycyclic aromatic sulfur heterocycles. Analysis based on capillaryelectrophoresis coupled with TOF MS[J]. Energ. Fuel, 2013,27:97-107. doi: 10.1021/ef301424d

    217. [217]

      Michalke B., Lucio M., Berthele A., Kanawati B.. Manganese speciation in paired serum and CSF samples using SEC-DRC-ICP-MS and CE-ICP-DRC-MS[J]. Anal. Bioanal. Chem., 2013,405:2301-2309. doi: 10.1007/s00216-012-6662-7

    218. [218]

      Yassine M.M., Dabek-Zlotorzynska E., Harir M., Schmitt-Kopplin P.. Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultra-high-resolution fourier transform ion cyclotron resonance mass spectrometry[J]. Anal. Chem., 2012,84:6586-6594. doi: 10.1021/ac300798g

    219. [219]

      Yan X., Essaka D.C., Sun L., Zhu G., Dovichi N.J.. Bottom-up proteome analysis of E. coli using capillary zone electrophoresis-tandem mass spectrometry with an electrokinetic sheath-flow electrospray interface[J]. Proteomics, 2013,13:2546-2551. doi: 10.1002/pmic.v13.17

    220. [220]

      Zhu G., Sun L., Yan X., Dovichi N.J.. Bottom-up proteomics of escherichia coli using dynamic ph junction preconcentration and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry[J]. Anal. Chem., 2014,86:6331-6336. doi: 10.1021/ac5004486

  • 加载中
    1. [1]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    4. [4]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    5. [5]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    6. [6]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    7. [7]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    8. [8]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    9. [9]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    10. [10]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    11. [11]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    12. [12]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    13. [13]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(8)
  • Abstract views(836)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return