Citation: Yin Bangshao, Liang Xu, Zhu Weihua, Xu Ling, Zhou Mingbo, Song Jianxin. β to β Terpyridylene-bridged porphyrin nanorings[J]. Chinese Chemical Letters, ;2018, 29(1): 99-101. doi: 10.1016/j.cclet.2017.05.003 shu

β to β Terpyridylene-bridged porphyrin nanorings

  • Corresponding author: Song Jianxin, jxsong@hunnu.edu.cn; jxsong@hotmail.com
  • Received Date: 28 February 2017
    Revised Date: 1 April 2017
    Accepted Date: 5 May 2017
    Available Online: 11 January 2017

Figures(4)

  • 6, 6"-Terpyridylene bridged cyclic porphyrin dimer 2Ni, trimer 3Ni, tetramer 4Ni and pentamer 5Ni were obtained through Suzuki-Miyaura coupling reaction of β, β'-diboryl Ni(Ⅱ) porphyrin with 6, 6"-dibromo-2, 2':6', 2"-terpyridine. Free base porphyrin nanorings 2H-5H were obtained by demetallation of 2Ni-5Ni with sulfuric acid in CHCl3 and then were converted into 2Zn-5Zn upon treatment with Zn(OAc)2 in quantitative yields, respectively. All of these newly synthesized porphyrin nanorings were characterized by high-resolution mass spectrometry and 1H NMR spectroscopy. The photophysical properties of porphyrin nanoring were examined by UV-vis and fluorescence spectra. The electrochemical properties of 2Ni-5Ni were investigated by cyclic voltammetry and differential pulse voltammetry. The UV-vis absorption spectra and fluorescence spectra of these cyclic porphyrin arrays indicate that there exist unique electronic interactions between the constituent porphyrin units in each ring. Electrochemical analysis shows that the trimer 3Ni exhibit different redox behavior, which indicate that the porphyrin units in 3Ni are presumably more coplanar than in other cyclic porphyrin arrays.
  • 加载中
    1. [1]

      (a) M. G. H. Vicente, L. Jaquinod, K. M. Smith, Chem. Commun. (1999) 1771-1782;
      (b) A. Tsuda, A. Osuka, Science 293(2001) 79-82;
      (c) M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem Int. Ed. 48(2009) 3244-3266;
      (d) N. Aratani, D. Kim, A. Osuka, Chem. Asian J. 4(2009) 1172-1182;
      (e) G. de la Torre, P. Vázquez, F. Agulló-López, T. Torres, Chem. Rev. 104(2004) 3723-3750;
      (f) J. E. Raymond, A. Bhaskar, T. Goodson Ⅲ, et al., J. Am Chem. Soc. 130(2008) 17212-17213.

    2. [2]

      (a) X. Peng, N. Aratani, A. Takagi, et al., J. Am. Chem. Soc. 126(2004) 4468-4469;
      (b) F. Hajjaj, Z. S. Yoon, M. C. Yoon, et al., J. Am Chem. Soc. 128(2006) 4612-4623;
      (c) Y. Xie, J. P. Hill, M. Akada, et al., Chem. Commun. 47(2011) 2285-2287.

    3. [3]

      G. McDermott, S.M. Prince, A.A. Freer, et al., Nature 374(1995) 517-521.  doi: 10.1038/374517a0

    4. [4]

      J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 4(1996) 581-597.  doi: 10.1016/S0969-2126(96)00063-9

    5. [5]

      A.W. Roszak, T.D. Howard, J. Southall, et al., Science 302(2003) 1969-1972.  doi: 10.1126/science.1088892

    6. [6]

      Y. Nakamura, N. Aratani, A. Osuka, Chem. Soc. Rev. 36(2007) 831-845.  doi: 10.1039/b618854k

    7. [7]

      X. Chi, A.J. Guerin, R.A. Haycock, C.A. Hunter, L.D. Sarson, J. Chem. Soc. Chem. Commun. (1995) 567-2569.

    8. [8]

      (a) J. Li, A. Ambroise, S. I. Yang, et al., J. Am. Chem. Soc. 121(1999) 8927-8940;
      (b) O. Mongin, A. Schuwey, M. A. Vallot, A. Gossauer, Tetrahedron Lett. 40(1999) 8347-8350.

    9. [9]

      Y. Kuramochi, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 126(2004) 8668-8669.  doi: 10.1021/ja048118t

    10. [10]

      (a) T. Hori, N. Aratani, A. Takagi, et al., Chem. Eur. J. 12(2006) 1319-1327;
      (b) Y. Nakamura, N. Aratani, H. Shinokubo, et al., J. Am Chem. Soc. 128(2006) 4119-4127.

    11. [11]

      (a) K. I. Sugiura, Y. Fujimoto, Y. Sakata, Chem. Commun. (2000) 1105-1106;
      (b) A. Kato, K. I. Sugiura, H. Miyasaka, et al., Chem. Lett. 33(2004) 578-579.

    12. [12]

      (a) I. Hisaki, S. Hiroto, K. S. Kim, et al., Angew. Chem. Int. Ed. 46(2007) 5125-5128;
      (b) S. Tokuji, H. Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 51(2012) 12357-12361.

    13. [13]

      (a) H. J. Hogben, J. K. Sprafke, M. Hoffmann, M. Pawlicki, H. L. Anderson, J. Am. Chem. Soc. 133(2011) 20962-20969;
      (b) D. V. Kondratuk, L. M. A. Perdigao, M. C. O'Sullivan, et al., Angew. Chem. Int. Ed. 51(2012) 6696-6699;
      (c) P. Neuhaus, A. Cnossen, J. Q. Gong, L. M. Herz, H. L. Anderson, Angew. Chem. Int. Ed. 54(2015) 7344-7348.

    14. [14]

      J. Song, S.Y. Jang, S. Yamaguchi, et al., Angew. Chem. Int. Ed. 47(2008) 6004-6007.  doi: 10.1002/anie.v47:32

    15. [15]

      J. Song, N. Aratani, H. Shinokubo, A. Osuka, Chem. Sci. 2(2011) 748-751.  doi: 10.1039/c0sc00605j

    16. [16]

      J. Song, N. Aratani, H. Shinokubo, A. Osuka, J. Chem. Eur. 16(2010) 13320-13324.  doi: 10.1002/chem.v16.45

    17. [17]

      (a) Y. Rao, J. O. Kim, W. Kim, et al., Chem. Eur. J. 22(2016) 8801-8804.

    18. [18]

      (a) J. Song, P. Kim, N. Aratani, et al., Chem. Eur. J. 16(2010) 3009-3012;
      (b) J. Song, N. Aratani, J. H. Heo, et al., J. Am Chem. Soc. 132(2010) 11868-11869;
      (c) J. Song, N. Aratani, H. Shinokubo, A. Osuka, J. Am. Chem. Soc. 132(2010) 16356-16357.

    19. [19]

      W. Huang, S.K. Lee, Y.M. Sung, et al., Chem. Eur. J. 21(2015) 15328-15338.  doi: 10.1002/chem.201502296

    20. [20]

      H.W. Jiang, T. Tanaka, T. Kim, et al., Angew. Chem. Int. Ed. 54(2015) 15197-15201.  doi: 10.1002/anie.201507822

    21. [21]

      Y. Nakamura, I.W. Hwang, N. Aratani, et al., J. Am. Chem. Soc. 127(2005) 236-246.  doi: 10.1021/ja045254p

    22. [22]

      H. Cai, K. Fujimoto, J.M. Lim, et al., Angew. Chem. Int. Ed. 53(2014) 11088-11091.  doi: 10.1002/anie.201407032

    23. [23]

      H. Hata, H. Shinokubo, A. Osuka, J. Am. Chem. Soc. 127(2005) 8264-8265.  doi: 10.1021/ja051073r

  • 加载中
    1. [1]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    2. [2]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    3. [3]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    6. [6]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    7. [7]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    8. [8]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    9. [9]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    10. [10]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    11. [11]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    12. [12]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    13. [13]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    14. [14]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    15. [15]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    16. [16]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    17. [17]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    18. [18]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

Metrics
  • PDF Downloads(1)
  • Abstract views(654)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return