Citation: Kazemi Samira, Mobinikhaledi Akbar, Zendehdel Mojgan. NaY zeolite functionalized by sulfamic acid/Cu(OAc)2 as a new and reusable heterogeneous hybrid catalyst for efficient solvent-free formylation of amines[J]. Chinese Chemical Letters, ;2017, 28(8): 1767-1772. doi: 10.1016/j.cclet.2017.04.029 shu

NaY zeolite functionalized by sulfamic acid/Cu(OAc)2 as a new and reusable heterogeneous hybrid catalyst for efficient solvent-free formylation of amines

  • Corresponding author: Kazemi Samira, samira.kazemy@gmail.com
  • Received Date: 13 January 2017
    Revised Date: 1 April 2017
    Accepted Date: 17 April 2017
    Available Online: 29 August 2017

Figures(10)

  • NaY zeolite functionalized by sulfamic acid/Cu(OAc)2 [NaY/SA/Cu(Ⅱ)] was synthesized and used as a new, efficient and recyclable catalyst for preparation of formamides. This novel organic-inorganic hybrid catalyst was characterized by several techniques such as FT-IR, XRD, SEM, EDX and TG analysis. Chemoselectivity, easy procedure, excellent yields, very short reaction times, solvent-free and mild reaction conditions are some benefits of this new protocol.
  • 加载中
    1. [1]

      Chen B.C., Bendarz M.S., Zhao R.. A new facile method for the synthesis of 1-arylimidazole-5-carboxylates[J]. Tetrahedron Lett., 2000,41:5453-5456. doi: 10.1016/S0040-4039(00)00910-2

    2. [2]

      Han Y., Cai L.. An efficient and convenient synthesis of formamidines[J]. Tetrahedron Lett., 1997,38:5423-5426. doi: 10.1016/S0040-4039(97)01206-9

    3. [3]

      Jackson A., Meth-Cohn O.. A new short and efficient strategy for the synthesis of quinolone antibiotics[J]. J. Chem. Soc. Chem. Commun., 1995,11319.

    4. [4]

      Lohary B.B., Baskaran S., Rao B.S.. A short synthesis of oxazolidinone derivatives linezolid and eperezolid:A new class of antibacterials[J]. Tetrahedron Lett., 1999,40:4855-4856. doi: 10.1016/S0040-4039(99)00893-X

    5. [5]

      Kobayashi K., Nagato S., Kawakita M.. Synthesis of 1-formyl-12-dihydroquinoline derivatives by a Lewis acid-catalyzed cyclization of o-(1-hydroxy-2-alkenyl)phenyl isocyanides[J]. Chem. Lett., 1995,24:575-576. doi: 10.1246/cl.1995.575

    6. [6]

      Petit G., Kalnins M., Liu T.. Notes-potential cancerocidal agents. Ⅲ. Formanilides[J]. J. Org. Chem., 1961,26:2563-2566. doi: 10.1021/jo01351a623

    7. [7]

      Martinez J., Laur J.. Active esters of formic acid as useful formylating agents:improvements in the synthesis of formyl-amino acid esters, N-a-Formyl-MetLeu-Phe-OH, and Formyl-Met-Lys-Pro-Arg, a phagocytosis stimulating peptide[J]. Synthesis, 1982,11:979-981.  

    8. [8]

      Downie I.M., Earle M.J., Heaney H.. Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride[J]. Tetrahedron, 1993,49:4015-4034. doi: 10.1016/S0040-4020(01)89915-4

    9. [9]

      (a) S. Kobayashi, K. Nishio, Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates, J. Org. Chem. 59(1994) 6620-6628;
      (b) S. Kobayashi, M. Yasuda, I. Hachiya, Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates, Chem. Lett. 25(1996) 407-408.

    10. [10]

      Strazzolini P., Giumanini A.G., Cauci S.. Acetic formic anhydride a review[J]. Tetrahedron, 1990,46:1081-1118. doi: 10.1016/S0040-4020(01)86676-X

    11. [11]

      Giesemann G., Ugi I.. Chloral-imine[N-(2, 2, 2-trichloroethyliden)-amine][J]. Synthesis, 1983,10:788-789.

    12. [12]

      Waki J., Meienhofer J.. Efficient preparation of N α-formylamino acid tert-butyl esters[J]. J. Org. Chem., 1977,42:2019-2020. doi: 10.1021/jo00431a046

    13. [13]

      Chen F.M.F., Benoiton N.L.. A general method for formylating sensitive amino acid esters[J]. Synthesis, 1979,9:709-710.  

    14. [14]

      Yale H.L.. Formylation of amines with phenyl formate[J]. J. Org. Chem., 1971,36:3238-3240. doi: 10.1021/jo00820a603

    15. [15]

      Camps F., Gasol V., Guerrero A.. A new and efficient one-pot preparation of alkyl halides from alcohols[J]. Synthesis, 1987,5:511-512.  

    16. [16]

      Duczek W., Deutsch J., Vieth S.. A simple and convenient synthesis of Nformyl amino acid esters under mild conditions[J]. Synthesis, 1996:37-38.

    17. [17]

      Reddy P.G., Kumar G.D.K., Baskaran S.. A convenient method for the Nformylation of secondary amines and anilines using ammonium formate[J]. Tetrahedron Lett., 2000,41:9149-9151. doi: 10.1016/S0040-4039(00)01636-1

    18. [18]

      Desai B., Danks T.N., Wagner G.. Thermal and microwave-assisted Nformylation using solid-supported reagents[J]. Tetrahedron Lett., 2005,46:955-957. doi: 10.1016/j.tetlet.2004.12.044

    19. [19]

      Hill D.R., Hasiao C.N., Kurukulasuriya R.. 2, 2, 2-Trifluoroethyl formate:a versatile and selective reagent for the formylation of alcohols, amines, and Nhydroxylamines[J]. Org. Lett., 2002,4:111-113. doi: 10.1021/ol016976d

    20. [20]

      Hosseini-Sarvari M., Sharghi H.. ZnO as a new catalyst for N-formylation of amines under solvent-free conditions[J]. J. Org. Chem., 2006,71:6652-6654. doi: 10.1021/jo060847z

    21. [21]

      Ma'mani L., Sheykhan M., Heydari A.. Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines[J]. Appl. Catal. A Gen., 2010,377:64-69. doi: 10.1016/j.apcata.2010.01.020

    22. [22]

      P. Anastas, T. Willianmson, Green Chemistry, Frontiers in Benign Chemical Synthesis and Procedures, Oxford Science Publication, Oxford, 1998.

    23. [23]

      Polshettiwar V., Molnár Á.. Silica-supported Pd catalysts for Heck coupling reactions[J]. Tetrahedron, 2007,63:6949-6976. doi: 10.1016/j.tet.2007.04.023

    24. [24]

      Hoelderich W.F., Haft B.A.. Structure-Activity and Selectivity Relationships in Heterogeneous Catalysis[J]. Elsevier Publishers, Amsterdam, 1991.  

    25. [25]

      Corma A.. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem. Rev., 1995,95:559-614. doi: 10.1021/cr00035a006

    26. [26]

      (a) P. Sivaguru, A. Lalitha, Ceric ammonium nitrate supported HY-zeolite: An efficient catalyst for the synthesis of 18-dioxo-octahydroxanthenes, Chin. Chem. Lett. 25(2014) 321-323;
      (b) X. M. Ma, B. D. Li, L. Chen, et al. , Selective nitration of aromatic compounds catalyzed by Hb zeolite using N2O5, Chin. Chem. Lett. 23(2012) 809-812;
      (c) L. Y. Fan, L. Wei, W. J. Hua, et al. , Yb modified NaY zeolite: A recyclable and efficient catalyst for quinoxaline synthesis, Chin. Chem. Lett. 25(2014) 1203-1206.

    27. [27]

      Habibi D., Nasrollahzadeh M., Sahebekhtiari H.. Green synthesis of formamides using the Natrolite zeolite as a natural, efficient and recyclable catalyst[J]. J. Mol. Catal. A:Chem., 2013,378:148-155. doi: 10.1016/j.molcata.2013.04.001

    28. [28]

      Bahari S., Mohammadi-Aghdam B., Sajadi S.M.. An efficient method for N-formylation of amines using natural HEU zeolite at room temperature under solvent-free conditions[J]. Bull. Korean Chem. Soc., 2012,33:2251-2254. doi: 10.5012/bkcs.2012.33.7.2251

    29. [29]

      (a) L. Han, H. J. Choi, S. J. Choi, et al. , Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide, Green Chem. 13(2011) 1023-1028;
      (b) L. Han, S. W. Park, D. W. Park, Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2, Energy Environ. Sci. 2(2009) 1286-1292;
      (c) S. R. Jagtap, V. P. Raje, S. D. Samant, et al. , Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides, J. Mol. Catal. A: Chem. 266(2007) 69-74;
      (d) J. Sun, S. I. Fujita, F. Zhao, et al. , Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions, Green Chem. 6(2004) 613-615.

    30. [30]

      Chandra D., Yokoi T., Tatsumi T.. Highly luminescent organic inorganic hybrid mesoporous silicas containing tunable chemosensor inside the pore wall[J]. Chem. Mater., 2007,19:5347-5354. doi: 10.1021/cm701918t

    31. [31]

      Das B., Meddeboina K., Balasubramanayam P.. A remarkably simple Nformylation of anilines using polyethylene glycol[J]. Tetrahedron Lett., 2008,49:2225-2227. doi: 10.1016/j.tetlet.2008.02.050

    32. [32]

      Hong M., Xiao G.. Hafnium(Ⅳ) bis(perfluorooctanesulfonyl)imide complex supported on fluorous silica gel catalyzed N-formylation of amines using aqueous formic acid[J]. J. Fluorine Chem., 2013,146:11-14. doi: 10.1016/j.jfluchem.2012.12.010

    33. [33]

      Majumdar S., De J., Hossain J.. Formylation of amines catalysed by protic ionic liquids under solvent-free condition[J]. Tetrahedron Lett., 2013,54:262-266. doi: 10.1016/j.tetlet.2012.11.017

    34. [34]

      Chandra Shekhar A., Ravi Kumar A., Sathaiah G.. Facile N-formylation of amines using Lewis acids as novel catalysts[J]. Tetrahedron Lett., 2009,50:7099-7101. doi: 10.1016/j.tetlet.2009.10.006

    35. [35]

      Satasia S.P., Kalaria P.N., Raval D.K.. Heteropolyanion-based sulfated ionic liquid catalyzed formamides synthesis by grindstone chemistry[J]. J. Mol. Catal. A Chem., 2014,391:41-47. doi: 10.1016/j.molcata.2014.04.005

  • 加载中
    1. [1]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    2. [2]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    3. [3]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    4. [4]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    7. [7]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    8. [8]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    9. [9]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    10. [10]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    11. [11]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    12. [12]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    13. [13]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    14. [14]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    17. [17]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    18. [18]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(1)
  • Abstract views(586)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return