Citation: Li Rongrong, Zhao Jia, Han Deman, Li Xiaonian. Pd/C modified with Sn catalyst for liquid-phase selective hydrogenation of maleic anhydride to gamma-butyrolactone[J]. Chinese Chemical Letters, ;2017, 28(6): 1330-1335. doi: 10.1016/j.cclet.2017.04.028 shu

Pd/C modified with Sn catalyst for liquid-phase selective hydrogenation of maleic anhydride to gamma-butyrolactone

  • Corresponding author: Han Deman, hdm@tzc.edu.cn Li Xiaonian, xnli@zjut.edu.cn
  • Received Date: 5 March 2017
    Revised Date: 20 April 2017
    Accepted Date: 24 April 2017
    Available Online: 27 June 2017

Figures(5)

  • Pd catalysts suffered from poor selectivity and stability for liquid-phase hydrogenation of maleic anhydride (MA) to gamma-butyrolactone (GBL). Thus, Pd/C catalysts modified with different Sn loadings were synthesized, and characterized by XRD, XPS, TEM and elemental mapping. The types of alloy phase and the amounts of the surface Pd-SnOx sites altered along with Sn/Pd mass ratios from 0-1.0 synthesized in the process of preparation. The maximum reaction rate was 0.57 mol-GBL/(mol-Pd min) and selectivity was 95.94% when the Sn/Pd mass ratio was 0.6. It might be attributed to the formation of Pd2Sn alloy and less amounts of Pd-SnOx sites.
  • 加载中
    1. [1]

      Zou Y., Leng Y., Huang C.. Measurement and correlation of solubility of succinic anhydride in pure solvents and binary solvent mixtures[J]. J. Chem. Thermodyn., 2017,104:82-90. doi: 10.1016/j.jct.2016.09.025

    2. [2]

      Chen L.F., Guo P.J., Zhu L.J.. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1, 4-butanediol[J]. Appl. Catal. A, 2009,356:129-136. doi: 10.1016/j.apcata.2008.12.029

    3. [3]

      Harris N., Tuck M.W.. Butanediol via maleic anhydride[J]. Hydrocarbon Process, 1990,69:79-82.  

    4. [4]

      Intra B., Euanorasetr J., Nihira T.. Characterization of a gammabutyrolactone synthetase gene homologue (stcA) involved in bafilomycin production and aerial mycelium formation in Streptomyces sp. SBI034[J]. Appl. Microbiol. Biotechnol., 2016,100:2749-2760. doi: 10.1007/s00253-015-7142-8

    5. [5]

      Brownstein A.M.. 1, 4-Butanediol and tetrahydrofuran:exemplary smallvolume commodities[J]. Chem. Technol., 1991,21:506-510.

    6. [6]

      Hong U.G., Kim J.K., Lee J.. Hydrogenation of succinic acid to tetrahydrofuran (THF) over ruthenium-carbon composite (Ru-C) catalyst[J]. Appl. Catal. A, 2014,469:466-471. doi: 10.1016/j.apcata.2013.10.029

    7. [7]

      Huang Y., Ma Y., Cheng Y.. Active ruthenium catalysts prepared by cacumen platycladi leaf extract for selective hydrogenation of maleic anhydride[J]. Appl. Catal. A, 2015,495:124-130. doi: 10.1016/j.apcata.2015.02.014

    8. [8]

      Ma Y., Huang Y., Chen Y.. Selective liquid-phase hydrogenation of maleic anhydride to succinic anhydride on biosynthesized ru-based catalysts[J]. Catal. Commun., 2014,57:40-44. doi: 10.1016/j.catcom.2014.08.001

    9. [9]

      Zhang B., Zhu Y., Ding G.. Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1, 4-butanediol to γ-butyrolactone[J]. Appl. Catal. A 443-, 2012,444:191-201.  

    10. [10]

      Bertone M.E., Regenhardt S.A., Meyer C.I.. Highly selective Cumodified Ni/SiO2-Al2O3 catalysts for the conversion of maleic anhydride to -butyrolactone in gas phase[J]. Top. Catal., 2016,59:1-9. doi: 10.1007/s11244-015-0511-9

    11. [11]

      Zhang D., Yin H., Xue J.. Selective hydrogenation of maleic anhydride to tetrahydrofuran over Cu-Zn-M (M=Al, Ti, Zr) catalysts using ethanol as a solvent[J]. Ind. Eng. Chem. Res., 2009,48:11220-11224. doi: 10.1021/ie9013875

    12. [12]

      Kannapu H.P.R., Neeli C.K.P., Rao K.S.R.. Unusual effect of cobalt on Cu-MgO catalyst for the synthesis of γ-butyrolactone and aniline via coupling reaction[J]. Catal. Sci. Technol., 2016,6:5494-5503. doi: 10.1039/C6CY00397D

    13. [13]

      Zhang D., Yin H., Ge C.. Selective hydrogenation of maleic anhydride to gbutyrolactone and tetrahydrofuran by Cu-Zn-Zr catalyst in the presence of ethanol[J]. J. Ind. Eng. Chem., 2009,15:537-543. doi: 10.1016/j.jiec.2009.01.010

    14. [14]

      Regenhardt S.A., Meyer C.I., Garetto T.F.. Selective gas phase hydrogenation of maleic anhydride over Ni-supported catalysts:effect of support on the catalytic performance[J]. Appl. Catal. A, 2012,449:81-87. doi: 10.1016/j.apcata.2012.09.023

    15. [15]

      Bertone M.E., Meyer C.I., Regenhardt S.A.. Highly selective conversion of maleic anhydride to γ-butyrolactone over Ni-supported catalysts prepared by precipitation-deposition method[J]. Appl. Catal. A, 2015,503:135-146. doi: 10.1016/j.apcata.2015.07.013

    16. [16]

      Li J., Tian W., Shi L.. Hydrogenation of maleic anhydride to succinic anhydride over Ni/HY-Al2O3[J]. Ind. Eng. Chem. Res., 2010,49:11837-11840. doi: 10.1021/ie101072v

    17. [17]

      Li J., Tian W.P., Wang X.. Nickel and nickel-platinum as active and selective catalyst for the maleic anhydride hydrogenation to succinic anhydride[J]. Chem. Eng. J., 2011,175:417-422. doi: 10.1016/j.cej.2011.09.023

    18. [18]

      Wei S., Pan C., Yang X.. Coupling reaction of 1, 4-butanediol with maleic anhydride over Cr-Cu/SiO2 catalysts[J]. Acta Chim. Sin., 2008,661287.

    19. [19]

      Li S., Wang X., Liu X.. Aqueous-phase hydrogenation of biomass-derived itaconic acid to methyl-γ-butyrolactone over Pd/C catalysts:effect of pretreatments of active carbon[J]. Catal. Commun., 2015,61:92-96. doi: 10.1016/j.catcom.2014.12.017

    20. [20]

      Zhang C., Chen L., Cheng H.. Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to γ-butyrolactone[J]. Catal. Today, 2016,276:55-61. doi: 10.1016/j.cattod.2016.01.028

    21. [21]

      Jin Z., Yu C., Wang X.. Liquid phase hydrodechlorination of chlorophenols at lower temperature on a novel Pd catalyst[J]. J. Hazard Mater., 2011,186:1726-1732. doi: 10.1016/j.jhazmat.2010.12.058

    22. [22]

      Kopinke F.D., D. Angeles-Wedler, Fritsch D.. Pd-catalyzed hydrodechlorination of chlorinated aromatics in contaminated waterseffects of surfactants, organic matter and catalyst protection by silicone coating[J]. Appl. Catal. B Environ., 2010,96:323-328. doi: 10.1016/j.apcatb.2010.02.028

    23. [23]

      Rong H., Cai S., Niu Z.. Composition-dependent catalytic activity of bimetallic nanocrystals:AgPd-catalyzed hydrodechlorination of 4-chlorophenol[J]. ACS Catal., 2013,3:1560-1563. doi: 10.1021/cs400282a

    24. [24]

      Pillai U.R., Sahle-Demessie E.. ChemInform abstract:selective hydrogenation of maleic anhydride to γ-butyrolactone over Pd/Al2O3 catalyst using supercritical CO2 as solvent[J]. Chem. Commun., 2002,33:422-423.

    25. [25]

      Pillai U.R., E. Sahle-Demessie, Young D.. Maleic anhydride hydrogenation over Pd/Al2O3 catalyst under supercritical CO2 medium[J]. Appl. Catal. B, 2003,43:131-138. doi: 10.1016/S0926-3373(02)00305-3

    26. [26]

      Vaidya S.H., Rode C.V., Chaudhari R.V.. Bimetallic Pt-Sn/γ-alumina catalyst for highly selective liquid phase hydrogenation of diethyl succinate to γ-butyrolactone[J]. Catal Commun., 2007,8:340-344. doi: 10.1016/j.catcom.2006.06.026

    27. [27]

      Furukawa S., Endo M., Komatsu T.. Bifunctional catalytic system effective for oxidative dehydrogenation of 1-butene and n-butane using Pd-based intermetallic compounds[J]. ACS Catal., 2014,4:3533-3542. doi: 10.1021/cs500920p

    28. [28]

      O. Lidor-Shalev, Zitoun D.. Reaction mechanism of amine-borane route towards Sn, Ni Pd, Pt nanoparticles[J]. RSC Adv., 2014,4:63603-63610. doi: 10.1039/C4RA11483C

    29. [29]

      Esmaeili E., Mortazavia Y., Khodadadi A.A.. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene[J]. Appl. Surf. Sci., 2012,263:513-522. doi: 10.1016/j.apsusc.2012.09.095

    30. [30]

      Esmaeili E., Rashidi A.M., Khodadadi A.A.. Palladium-tin nanocatalysts in high concentrationacetylene hydrogenation:a novel deactivation mechanism[J]. Fuel Process Technol., 2014,120:113-122. doi: 10.1016/j.fuproc.2013.12.015

    31. [31]

      Du W., Mackenzie K.E., Milano D.F.. Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium[J]. ACS Catal., 2012,2:287-297. doi: 10.1021/cs2005955

    32. [32]

      Zhao J., Xu X., Li X.. Promotion of Sn on the Pd/AC catalyst for the selective hydrogenation of cinnamaldehyde[J]. Catal. Commun., 2014,43:102-106. doi: 10.1016/j.catcom.2013.09.019

    33. [33]

      Jung S.M., Godard E., Jung S.Y.. Liquid-phase hydrogenation of maleic anhydride over Pd-Sn/SiO2[J]. Catal. Today, 2003,87:171-177. doi: 10.1016/j.cattod.2003.10.010

    34. [34]

      Esmaeili E., Mortazavi Y., Khodadadi A.A.. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene[J]. Appl. Surf. Sci., 2012,263:513-522. doi: 10.1016/j.apsusc.2012.09.095

    35. [35]

      Modibedi R.M., Masombuka T., Mathe M.K.. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium[J]. J. Hydrogen Energy, 2001,36:4664-4672.  

    36. [36]

      Lee A.F., Baddeley C.J., Tikhov M.S.. Structural and electronic properties of Sn overlayers and Pd/Sn surface alloys on Pd(111)[J]. Surf. Sci., 1997,373:195-209. doi: 10.1016/S0039-6028(96)01160-0

    37. [37]

      Kovnir K., Osswald J., Armbrüster M.. Etching of the intermetallic compounds PdGa and Pd3Ga7:an effective way to increase catalytic activity[J]. J. Catal., 2009,264:93-103. doi: 10.1016/j.jcat.2009.03.007

    38. [38]

      Kovnir K., Armbrüster M., Teschner D.. A new approach to well-defined, stable and site-isolated catalysts[J]. Sci. Technol. Adv. Mater., 2007,8:420-427. doi: 10.1016/j.stam.2007.05.004

    39. [39]

      Teschner D., Pestryakov A., Kleimenov E.. High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts. Part 1:effect of gas ambient and temperature[J]. J. Catal., 2005,230186. doi: 10.1016/j.jcat.2004.11.036

    40. [40]

      Teschner D., Pestryakov A., Kleimenov E.. High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts. Part 2:hydrogenation of trans-2-pentene on palladium[J]. J. Catal., 2005,230:195-203. doi: 10.1016/j.jcat.2004.11.035

    41. [41]

      Jung S.M., Godard E., Jung S.Y.. Liquid-phase hydrogenation of maleic anhydride over Pd-Sn/SiO2[J]. Catal. Today, 2003,87:171-177. doi: 10.1016/j.cattod.2003.10.010

    42. [42]

      Sales E.A., Jove J., Mendes M.J.. Palladium, palladium-tin, and palladium-silver catalysts in the selective hydrogenation of hexadienes:TPR, mössbauer, and infrared studies of adsorbed CO[J]. J. Catal., 2000,195:88-95. doi: 10.1006/jcat.2000.2967

    43. [43]

      Vilella I.M.J., S.R. deMiguel, Scelza O.A.. Pt, PtSn and PtGe catalysts supported on granular carbon for fine chemistry hydrogenation reactions[J]. J. Mol. Catal. A, 2008,284:161-171. doi: 10.1016/j.molcata.2008.01.017

    44. [44]

      Haghofer A., Föttinger K., Girgsdies F.. In situ study of the formation and stability of supported Pd2Ga methanol steam reforming catalysts[J]. J. Catal., 2012,286:13-21. doi: 10.1016/j.jcat.2011.10.007

    45. [45]

      Dandekar A., Vannice M.A.. Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts[J]. J. Catal., 1999,183:344-354. doi: 10.1006/jcat.1999.2419

    46. [46]

      Tauster S.J., Fung S.C., Garten R.L.. ChemInform abstract:strong metal-support interactions Group 8 noble metals supported in titanium dioxide[J]. J. Am. Chem. Soc., 1978,100:170-175. doi: 10.1021/ja00469a029

    47. [47]

      Clarke J.K.A., Dempsey R.J., Baird T.. Selectivities for hydrocarbon reactions on SMSI titania-supported platinum formed by high-temperature reduction[J]. J. Catal., 1990,126:370-380. doi: 10.1016/0021-9517(90)90005-5

    48. [48]

      Tauster S.J., Fung S.C.. Strong metal-support interactions:occurrence among the binary oxides of groups ⅡA-VB[J]. J. Catal., 1978,55:29-35. doi: 10.1016/0021-9517(78)90182-3

  • 加载中
    1. [1]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    4. [4]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    5. [5]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    15. [15]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    16. [16]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    17. [17]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    18. [18]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    19. [19]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    20. [20]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

Metrics
  • PDF Downloads(1)
  • Abstract views(1051)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return