Citation: Alduhaish Osamah, Li Bin, Arman Hadi, Lin Rui-Biao, Zhao John Cong-Gui, Chen Banglin. A two-dimensional microporous metal-organic framework for highly selective adsorption of carbon dioxide and acetylene[J]. Chinese Chemical Letters, ;2017, 28(8): 1653-1658. doi: 10.1016/j.cclet.2017.04.025 shu

A two-dimensional microporous metal-organic framework for highly selective adsorption of carbon dioxide and acetylene

  • Corresponding author: Lin Rui-Biao, ruibiao.lin@utsa.edu Chen Banglin, banglin.chen@utsa.edu
  • Received Date: 28 February 2017
    Revised Date: 2 April 2017
    Accepted Date: 12 April 2017
    Available Online: 27 August 2017

Figures(5)

  • Solvothermal reaction of 3-aminoisonicotinic acid (Haina) and Cu(NO3)2·2.5H2O gave a novel twodimensional (2D) microporous metal-organic framework, [Cu(aina)2(DMF)]·DMF (1, DMF=N, N-dimethylformamide). Single-crystal X-ray crystallographic study of compound 1 revealed that Cu(Ⅱ) ions are linked by aina- ligands forming square grid-like layers, which stack together via multiple hydrogen bonding interactions. The solvent-free framework of 1a displayed considerable porosity (void=46.5%) with one-dimensional (1D) open channels (4.7 Å×4.8 Å) functionalized by amino groups. Gas sorption measurements of 1 revealed selective carbon dioxide (CO2) and acetylene (C2H2) adsorption over methane (CH4) and nitrogen (N2) at ambient temperature.
  • 加载中
    1. [1]

      (a) K. Z. House, A. C. Baclig, M. Ranjan, et al. , Economic and energetic analysis of capturing CO2 from ambient air, Proc. Natl. Acad. Sci. U. S. A. 108(2011) 20428-20433;
      (b) K. S. Lackner, S. Brennan, J. M. Matter, et al. , The urgency of the development of CO2 capture from ambient air, Proc. Natl. Acad. Sci. U. S. A. 109(2012) 13156-13162.

    2. [2]

      (a) D. M. D’Alessandro, B. Smit, J. R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49(2010) 6058-6082;
      (b) E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Direct capture of CO2 from ambient air, Chem. Rev. 116(2016) 11840-11876.

    3. [3]

      (a) C. A. Scholes, G. W. Stevens, S. E. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96(2012) 15-28;
      (b) M. Tagliabue, D. Farrusseng, S. Valencia, et al. , Natural gas treating by selective adsorption: material science and chemical engineering interplay, Chem. Eng. J. 155(2009) 553-566;
      (c) S. Cavenati, C. A. Grande, A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data 49(2004) 1095-1101.

    4. [4]

      (a) Y. He, R. Krishna, B. Chen, Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons, Energy Environ. Sci. 5(2012) 9107-9120;
      (b) F. Luo, C. Yan, L. Dang, et al. , UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation, J. Am. Chem. Soc. 138(2016) 5678-5684.

    5. [5]

      (a) H. -C. Zhou, S. Kitagawa, Metal-organic frameworks (MOFs), Chem. Soc. Rev. 43(2014) 5415-5418;
      (b) Y. Cui, B. Li, H. He, et al. , Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res. 49(2016) 483-493;
      (c) P. Silva, S. M. F. Vilela, J. P. C. Tome, F. A. Almeida Paz, Multifunctional metal-organic frameworks: from academia to industrial applications, Chem. Soc. Rev. 44(2015) 6774-6803;
      (d) H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 641(2010) 1230444.

    6. [6]

      (a) T. R. Cook, Y. R. Zheng, P. J. Stang, Metal-organic frameworks and selfassembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials, Chem. Rev. 113(2013) 734-777;
      (b) C. Wang, D. M. Liu, W. B. Lin, Metal-organic frameworks as a tunable platform for designing functional molecular materials, J. Am. Chem. Soc. 135(2013) 13222-13234;
      (c) Y. He, B. Li, M. O'Keeffe, B. Chen, Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units, Chem. Soc. Rev. 43(2014) 5618-5656;
      (d) C. Wang, T. Zhang, W. Lin, Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics, Chem. Rev. 112(2012) 1084-1104.

    7. [7]

      (a) K. Sumida, D. L. Rogow, J. A. Mason, et al. , Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112(2012) 724-781;
      (b) H. Wu, Q. Gong, D. H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev. 112(2012) 836-868;
      (c) M. P. Suh, H. J. Park, T. K. Prasad, D. -W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev. 112(2012) 782-835;
      (d) Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal-organic frameworks, Chem. Soc. Rev. 43(2014) 5657-5678.

    8. [8]

      (a) Z. Zhang, Z. Yao, S. Xiang, B. Chen, Perspective of microporous metal-organic frameworks for CO2 capture and separation, Energy Environ. Sci. 7(2014) 2868-2899;
      (b) Z. Bao, G. Chang, H. Xing, et al. , Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci. 9(2016) 3612-3641;
      (c) B. Li, H. Wang, B. Chen, Microporous metal-organic frameworks for gas separation, Chem. -Asian J. 9(2014) 1474-1498;
      (d) J. R. Li, J. Sculley, H. C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112(2012) 869-932.

    9. [9]

      (a) Z. Hu, W. P. Lustig, J. Zhang, et al. , Effective detection of mycotoxins by a highly luminescent metal-organic framework, J. Am. Chem. Soc. 137(2015) 16209-16215;
      (b) L. E. Kreno, K. Leong, O. K. Farha, et al. , Metal-organic framework materials as chemical sensors, Chem. Rev. 112(2012) 1105-1125;
      (c) Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal-organic frameworks, Chem. Rev. 112(2012) 1126-1162;
      (d) Z. Hu, B. J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev. 43(2014) 5815-5840.

    10. [10]

      (a) M. Zhao, S. Ou, C. De Wu, Porous metal-organic frameworks for heterogeneous biomimetic catalysis, Acc. Chem. Res. 47(2014) 1199-1207;
      (b) G. Huang, Y. Chen, H. Jiang, Metal-organic frameworks for catalysis, Acta Chim. Sin. 74(2016) 113-129;
      (c) J. W. Ding, R. Wang, A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant, Chin. Chem. Lett. 27(2016) 655-658;
      (d) P. Li, S. Regati, H. -C. Huang, et al. , A sulfonate-based Cu(Ⅰ) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions, Chin. Chem. Lett. 26(2015) 6-10;
      (e) Y. -Z. Chen, Z. U. Wang, H. Wang, et al. , Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state, J. Am. Chem. Soc. 139(2017) 2035-2044.

    11. [11]

      (a) K. Lu, C. He, W. Lin, Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer, J. Am. Chem. Soc. 136(2014) 16712-16715;
      (b) C. He, D. Liu, W. Lin, Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers, Chem. Rev. 115(2015) 11079-11108;
      (c) A. C. McKinlay, R. E. Morris, P. Horcajada, et al. , BioMOFs: metal-organic frameworks for biological and medical applications, Angew. Chem. Int. Ed. 49(2010) 6260-6266.

    12. [12]

      (a) X. Cui, K. Chen, H. Xing, et al. , Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene, Science 353(2016) 141-144;
      (b) T. -L. Hu, H. Wang, B. Li, et al. , Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures, Nat. Commun. 6(2015) 7328.

    13. [13]

      (a) S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B. Chen, Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites, J. Am. Chem. Soc. 131(2009) 12415-12419;
      (b) Q. Min Wang, D. Shen, M. Bulow, et al. , Metallo-organic molecular sieve for gas separation and purification, Micropor. Mesopor. Mater. 55(2002) 217-230.

    14. [14]

      Llewellyn P.L., Bourrelly S., Serre C.. High uptakes of CO2 and CH4 in mesoporous metal-organic framework MIL-100 and MIL-101[J]. Langmuir, 2008:7245-7250.  

    15. [15]

      (a) L. Bastin, P. S. Ba, E. J. Hurtado, et al. , A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption, J. Phys. Chem. C 112(2008) 1575-1581;
      (b) R. -B. Lin, F. Li, S. Y. Liu, et al. , A noble-metal-free porous coordinationframework with exceptional sensing efficiency for oxygen, Angew. Chem. Int. Ed. 52(2013) 13429-13433.

    16. [16]

      Chen Z., Xiang S., Arman H.D.. A microporous metal-organic framework with immobilized OH functional groups within the pore surfaces for selective gas sorption[J]. Eur. J. Inorg. Chem, 2010:3745-3749.  

    17. [17]

      Lin R.-B., Chen D., Lin Y., Zhang J., Chen X.. A zeolite-like zinc triazolate framework with high gas adsorption and separation performance[J]. Inorg. Chem., 2012,51:9950-9955. doi: 10.1021/ic301463z

    18. [18]

      Sheldrick G.M.. SHELXT-integrated space-group and crystal-structure determination[J]. Acta Crystallogr. Sect. A Found. Adv., 2015,71:3-8.  

    19. [19]

      CrystalClear-SM Expert 2. 0 r15, Rigaku Americas Co. , The Woodlands, Texas, USA, 2011.

    20. [20]

      ABSCOR, Higashi, Rigaku Corporation, Tokyo, Japan, 1995.

    21. [21]

      Myers A.L., Prausnitz J.M.. Thermodynamics of mixed-gas adsorption[J]. AIChE J., 1965,11:121-127. doi: 10.1002/(ISSN)1547-5905

    22. [22]

      (a) D. Banerjee, Z. Zhang, A. M. Plonka, J. Li, J. B. Parise, A calcium coordination framework having permanent porosity and high CO2/N2 selectivity, Cryst. Growth Des. 12(2012) 2162-2165;
      (b) Y. Li, Z. Ju, B. Wu, D. Yuan, A water and thermally stable metal-organic framework featuring selective CO2 adsorption, Cryst. Growth Des. 14(2013) 4125-4130.

    23. [23]

      Serre C., Mellot-Draznieks C., Surbl S.. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks[J]. Science, 2007,315:1828-1831. doi: 10.1126/science.1137975

    24. [24]

      Xu H., He Y., Zhang Z.. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature[J]. J. Mater. Chem. A, 2013,1:77-81. doi: 10.1039/C2TA00155A

    25. [25]

      Alduhaish O., Wang H., Li B.. A threefold interpenetrated pillared-layer metal-organic framework for selective separation of C2H2/CH4 and CO2/CH4[J]. ChemPlusChem, 2016,81:764-769. doi: 10.1002/cplu.201600088

    26. [26]

      Li J.-R., Yu J., Lu W.. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J]. Nat. Commun, 2013,41538. doi: 10.1038/ncomms2552

    27. [27]

      Xiang S., He Y., Zhang Z.. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nat. Commun, 2012,3954. doi: 10.1038/ncomms1956

  • 加载中
    1. [1]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    2. [2]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    3. [3]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    7. [7]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    8. [8]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    9. [9]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    10. [10]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    11. [11]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    16. [16]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    17. [17]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    18. [18]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    19. [19]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    20. [20]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

Metrics
  • PDF Downloads(1)
  • Abstract views(582)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return