Citation: Liu Jing, Chen Qi-Wei, Wu Kai. On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies[J]. Chinese Chemical Letters, ;2017, 28(8): 1631-1639. doi: 10.1016/j.cclet.2017.04.022 shu

On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies

  • Corresponding author: Liu Jing, jingliu-pku@hotmail.com Wu Kai, kaiwu@pku.edu.cn
  • Received Date: 10 January 2017
    Revised Date: 20 March 2017
    Accepted Date: 17 April 2017
    Available Online: 23 August 2017

Figures(9)

  • Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials. The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures. This review summarizes various on-surface linking strategies for terminal alkynes, including non-bonding interactions as well as organometallic and covalent bonds, and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures, substrates and activation modes. Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.
  • 加载中
    1. [1]

      Ye Y., Sun W., Wang Y.. A unified model:self-assembly of trimesic acid on gold[J]. J. Phys. Chem. C, 2007,111:10138-10141. doi: 10.1021/jp072726o

    2. [2]

      Liang H., He Y., Ye Y.. Two-dimensional molecular porous networks constructed by surface assembling[J]. Coord. Chem. Rev., 2009,253:2959-2979. doi: 10.1016/j.ccr.2009.07.028

    3. [3]

      Liang H., Sun W., Jin X.. Two-dimensional molecular porous networks formed by trimesic acid and 4, 4'-bis(4-pyridyl)biphenyl on Au(111) through hierarchical hydrogen bonds:structural systematics and control of nanopore size and shape[J]. Angew. Chem., 2011,50:7562-7566. doi: 10.1002/anie.201101477

    4. [4]

      Xu J., Zeng Q.-D.. Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM[J]. Chin. Chem. Lett., 2013,24:177-182. doi: 10.1016/j.cclet.2013.02.005

    5. [5]

      Zhang X., Li N., Gu G.-C.. Controlling molecular growth between fractals and crystals on surfaces[J]. ACS Nano, 2015,9:11909-11915. doi: 10.1021/acsnano.5b04427

    6. [6]

      Xie C., Wu Q.-M., Li R.-N.. Isolated supramolecules on surfaces studied with scanning tunneling microscopy[J]. Chin. Chem. Lett., 2016,27:807-812. doi: 10.1016/j.cclet.2016.03.022

    7. [7]

      Champness N.R.. Building with molecules[J]. Nat. Nanotechnol, 2007,2:671-672. doi: 10.1038/nnano.2007.355

    8. [8]

      Grill L., Dyer M., Lafferentz L.. Nano-architectures bycovalent assemblyof molecular building blocks[J]. Nat. Nanotechnol., 2007,2:687-691. doi: 10.1038/nnano.2007.346

    9. [9]

      Gourdon A.. On-surface covalent coupling in ultrahigh vacuum[J]. Angew. Chem. Int. Ed., 2008,47:6950-6953. doi: 10.1002/anie.v47:37

    10. [10]

      Champness N.R.. Surface chemistry:making the right connections[J]. Nat. Chem., 2012,4:149-150. doi: 10.1038/nchem.1276

    11. [11]

      Lafferentz L., Eberhardt V., Dri C.. Controlling on-surface polymerization by hierarchical and substrate-directed growth[J]. Nat. Chem., 2012,4:215-220. doi: 10.1038/nchem.1242

    12. [12]

      Colson J.W., Dichtel W.R.. Rationally synthesized two-dimensional polymers[J]. Nat. Chem., 2013,5:453-465. doi: 10.1038/nchem.1628

    13. [13]

      Elemans J.A., Lei S., De Feyter S.. Molecular and supramolecular networks on surfaces:from two-dimensional crystal engineering to reactivity[J]. Angew. Chem. Int. Ed., 2009,48:7298-7332. doi: 10.1002/anie.v48:40

    14. [14]

      Perepichka D.F., Rosei F.. Extending polymer conjugation into the second dimension[J]. Science, 2009,323:216-217. doi: 10.1126/science.1165429

    15. [15]

      Sakamoto J., van Heijst J., Lukin O., Schluter A.D.. Two-dimensional polymers:just a dream of synthetic chemists?[J]. Angew. Chem. Int. Ed, 2009,48:1030-1069. doi: 10.1002/anie.v48:6

    16. [16]

      Palma C.-A., Samorì P.. Blueprinting macromolecular electronics[J]. Nat. Chem., 2011,3:431-436. doi: 10.1038/nchem.1043

    17. [17]

      Lu Y., Zou J., Wang H.. Triangular halogen trimers. A DFT study of the structure cooperativity, and vibrational properties[J]. J. Phys. Chem. A, 2005,109:11956-11961. doi: 10.1021/jp0547360

    18. [18]

      Silly F.. Selecting two-dimensional halogen-halogen bonded self-assembled 1, 3, 5-tris(4-iodophenyl)benzene porous nanoarchitectures at the solid-liquid interface[J]. J. Phys. Chem. C, 2013,117:20244-20249. doi: 10.1021/jp4057626

    19. [19]

      Walch H., Gutzler R., Sirtl T., Eder G., Lackinger M.. Material-and orientation-dependent reactivity for heterogeneously catalyzed carbon-bromine bond homolysis[J]. J. Phys. Chem. C, 2010,114:12604-12609. doi: 10.1021/jp102704q

    20. [20]

      Yoon J.K., Son W.-J., Chung K.-H.. Visualizing halogen bonds in planar supramolecular systems[J]. J. Phys. Chem. C, 2011,115:2297-2301.  

    21. [21]

      Shang J., Wang Y., Chen M.. Assembling molecular Sierpinski triangle fractals[J]. Nat. Chem., 2015,7:389-393. doi: 10.1038/nchem.2211

    22. [22]

      Legon A.C.. The halogen bond:an interim perspective[J]. Phys. Chem. Chem. Phys., 2010,12:7736-7747. doi: 10.1039/c002129f

    23. [23]

      Hla S.-W., Bartels L., Meyer G., Rieder K.-H.. Inducing all steps of a chemical reactionwith the scanning tunneling microscope tip:towards single molecule engineering[J]. Phys. Rev. Lett., 2000,85:2777-2780. doi: 10.1103/PhysRevLett.85.2777

    24. [24]

      Bieri M., Treier M., Cai J.. Porous graphenes:two-dimensional polymer synthesis with atomic precision[J]. Chem. Commun, 2009:6919-6921.  

    25. [25]

      Lafferentz L., Ample F., Yu H.. Conductance of a single conjugated polymer as a continuous function of its length[J]. Science, 2009,323:1193-1197. doi: 10.1126/science.1168255

    26. [26]

      Bieri M., Nguyen M.-T., Gröning O.. Two-dimensional polymer formation on surfaces insight into the roles of precursor mobility and reactivity[J]. J. Am. Chem. Soc., 2010,132:16669-16676. doi: 10.1021/ja107947z

    27. [27]

      Cai J., Ruffieux P., Jaafar R.. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010,466:470-473. doi: 10.1038/nature09211

    28. [28]

      Shen Q., He J.H., Zhang J.L.. Self-assembled two-dimensional nanoporous molecular arrays and photoinduced polymerization of 4-bromo-4'-hydroxybiphenyl on Ag(111)[J]. J. Chem. Phys, 2015,142101902. doi: 10.1063/1.4906116

    29. [29]

      Zhou X., Bebensee F., Shen Q.. On-surface synthesis approach to preparing one-dimensional organometallic and poly-π-πhenylene chains[J]. Mater. Chem. Front., 2017,1:119-127. doi: 10.1039/C6QM00142D

    30. [30]

      Zwaneveld N.A.A., Pawlak R., Abel M.. Organized formation of 2D extended covalent organic frameworks at surfaces[J]. J. Am. Chem. Soc., 2008,130:6678-6679. doi: 10.1021/ja800906f

    31. [31]

      Zhong D., Franke J.H., Podiyanachari S.K.. Linear alkane polymerization on a gold surface[J]. Science, 2011,334:213-216. doi: 10.1126/science.1211836

    32. [32]

      Hanke F., Haq S., Raval R., Persson M.. Heat-to-connect surface commensurability directs organometallic one-dimensional self-assembly[J]. ACS Nano, 2011,5:9093-9103. doi: 10.1021/nn203337v

    33. [33]

      Haq S., Hanke F., Dyer M.S.. Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers[J]. J. Am. Chem. Soc., 2011,133:12031-21039. doi: 10.1021/ja201389u

    34. [34]

      Haq S., Hank F., Sharp J.. Versatile bottom-up construction of diverse macromolecules on a surface observed by scanning tunneling microscopy[J]. ACS Nano, 2014,8:8856-8870. doi: 10.1021/nn502388u

    35. [35]

      Diederich F.. Carbon scaffolding:building acetylenic all-carbon and carbonrich compounds[J]. Nature, 1994,369:199-207. doi: 10.1038/369199a0

    36. [36]

      Diederich F., Kivala M.. All-carbon scaffolds by rational design[J]. Adv. Mater., 2010,22:803-812. doi: 10.1002/adma.v22:7

    37. [37]

      Baughman R.H., Eckhardt H., Kertesz M.. Structure-property predictions for new planar forms of carbon:layered phases containing sp2 and sp atoms[J]. J. Chem. Phys., 1987,876687. doi: 10.1063/1.453405

    38. [38]

      Narita N., Nagai S., Suzuki S., Nakao K.. Optimized geometries and electronic structures of graphyne and its family[J]. Phy. Rev. B, 1998,58:11009-11014. doi: 10.1103/PhysRevB.58.11009

    39. [39]

      Haley M.M., Brand S.C., Pak J.J.. Carbon networks based on dehydrobenzoannulenes:synthesis of graphdiyne substructures[J]. Angew. Chem. Int. Ed. Engl., 1997,36:835-838.  

    40. [40]

      Wan W.B., Brand S.C., Pak J.J., Haley M.M.. Synthesis of expanded graphdiyne substructures[J]. Chem. Eur. J., 2000,6:2044-2052. doi: 10.1002/(ISSN)1521-3765

    41. [41]

      Li G., Li Y., Liu H.. Architecture of graphdiyne nanoscale films[J]. Chem. Commun., 2010,46:3256-3258. doi: 10.1039/b922733d

    42. [42]

      Li Q., Han C., Fuentes M., Cabrera -. Electronic control over attachment and self-assembly of alkyne groups on gold[J]. ACS Nano, 2012,6:9267-9275. doi: 10.1021/nn303734r

    43. [43]

      Li Q., Han C., Horton S.R.. Supramolecular self-assembly of p-conjugated hydrocarbons via 2D cooperative CH/π interaction[J]. ACS Nano, 2012,6:566-572. doi: 10.1021/nn203952e

    44. [44]

      Kepčija N., Zhang Y.-Q., Kleinschrodt M.. Steering on-surface self-9 assemblyof high-quality hydrocarbon networks with terminalalkynes[J]. J. Phys. Chem. C, 2013,1173987. doi: 10.1021/jp310606r

    45. [45]

      Tan Q., Sun Q., Cai L., Wang J., Ding Y.. Exploring the self-assembly behaviors of an organic molecule functionalized by terminal alkyne and aldehyde groups on Au(111)[J]. J. Phys. Chem. C, 2015,119:12935-12940.  

    46. [46]

      Zhang Y.-Q., Björk J., Weber P.. Unusual deprotonated alkynyl hydrogen bonding in metal-supported hydrocarbon assembly[J]. J. Phys. Chem. C, 2015,119:9669-9679. doi: 10.1021/acs.jpcc.5b02955

    47. [47]

      Liu J., Fu X., Chen Q.. Stabilizing surface Ag adatoms into tunable single atom arrays by terminal alkyne assembly[J]. Chem. Commun., 2016,52:12944-12947. doi: 10.1039/C6CC06444B

    48. [48]

      Liu J., Chen Q., Xiao L.. Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces[J]. ACS Nano, 2015,96305. doi: 10.1021/acsnano.5b01803

    49. [49]

      Gao H.-Y., Franke J.-H., Wagner H.. Effect of metal surfaces in on-surface Glaser coupling[J]. J. Phys. Chem. C, 2013,117:18595-18602. doi: 10.1021/jp406858p

    50. [50]

      Zhou H., Liu J., Du S.. Direct visualization of surface-assisted twodimensional diyne polycyclotrimerization[J]. J. Am. Chem. Soc., 2014,136:5567-5570. doi: 10.1021/ja501308s

    51. [51]

      Sun Q., Cai L., Wang S.. Bottom-up synthesis of metalated carbyne[J]. J. Am. Chem. Soc., 2016,138:1106-1109. doi: 10.1021/jacs.5b10725

    52. [52]

      Eichhorn J., Heckl W.M., Lackinger M.. On-surface polymerization of 1, 4-diethynylbenzene on Cu(111)[J]. Chem. Commun., 2013,49:2900-2902. doi: 10.1039/c3cc40444g

    53. [53]

      Liu J., Ruffieux P., Feng X., Müllen K., Fasel R.. Cyclotrimerization of arylalkynes on Au(111)[J]. Chem. Commun., 2014,50:11200-11203. doi: 10.1039/C4CC02859G

    54. [54]

      Riss A., Wickenburg S., Gorman P.. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface[J]. Nano Lett., 2014,14:2251-2255. doi: 10.1021/nl403791q

    55. [55]

      Klappenberger F., Zhang Y.Q., Björk J.. On-surface synthesis of carbonbased scaffolds and nanomaterials using terminal alkynes[J]. Acc. Chem. Res., 2015,48:2140-2150. doi: 10.1021/acs.accounts.5b00174

    56. [56]

      Nishio M.. CH/π hydrogen bonds in crystals[J]. Cryst. Eng. Comm., 2004,6:130-158. doi: 10.1039/b313104a

    57. [57]

      Nishio M.. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates[J]. Phys. Chem. Chem. Phys., 2011,13:13873-13900. doi: 10.1039/c1cp20404a

    58. [58]

      Steiner T.. Cooperative C≡C-H…C≡C) interactions:crystal structure of DLprop-2-ynylglycine and database study of terminal alkynes[J]. J. Chem. Soc. Chem. Commun, 1995:95-96.

    59. [59]

      Steiner T., Starikov E.B., Amado A.M., Teixeira-Dias J.J.C.. Weak hydrogen bonding. Part 2. The hydrogen bonding nature of short C-H…π contacts:crystallographic, spectroscopic and quantum mechanical studies of some terminal alkynes[J]. J. Chem. Soc. Perkin Trans., 1995,2:1321-1326.

    60. [60]

      Robinson J.M.A., Kariuki B.M., Gough R.J., Harris K.D.M., Philp D.. Preferential formation of C≡C-H…π(C≡C) interactions in the solid state[J]. J. Solid State Chem., 1997,134:203-206. doi: 10.1006/jssc.1997.7646

    61. [61]

      Weiss H.-C., Bläser D., Boese R., Doughanb B.M., Haley M.M.. C-H…π interactions in ethynylbenzenes:the crystal structures of ethynylbenzene and 1, 3, 5-triethynylbenzene, and a redetermination of the structure of 1, 4-diethynylbenzene[J]. Chem. Commun, 1997:1703-1704.  

    62. [62]

      Zhang Y.Q., Björk J., Barth J.V., Klappenberger F.. Intermolecular hybridization creating nanopore orbital in a supramolecular hydrocarbon sheet[J]. Nano Lett., 2016,16:4274-4281. doi: 10.1021/acs.nanolett.6b01324

    63. [63]

      Yam V.W.-W., Lo K.K.-W., Wong K.M.-C.. Luminescent polynuclear metal acetylides[J]. J. Org. Chem., 1999,578:3-30. doi: 10.1016/S0022-328X(98)01106-1

    64. [64]

      Powell C.E., Humphrey M.G.. Nonlinear optical properties of transition metal acetylides and their derivatives[J]. Coord. Chem. Rev., 2004,248:725-756. doi: 10.1016/j.ccr.2004.03.009

    65. [65]

      Fanga G., Bi X.. Silver-catalysed reactions of alkynes:recent advances[J]. Chem. Soc. Rev., 2015,44:8124-8173. doi: 10.1039/C5CS00027K

    66. [66]

      Fan Q., Wang C., Han Y.. Surface-assisted formation, assembly, and dynamics of planar organometallic macrocycles and zigzag shaped polymer chains with C-Cu-C bonds[J]. ACS Nano, 2014,8:709-718. doi: 10.1021/nn405370s

    67. [67]

      Giovannantonio M.D., Garah M.E., Lipton J., Duffin -. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization[J]. ACS Nano, 2013,7:8190-8198. doi: 10.1021/nn4035684

    68. [68]

      Eichhorn J., Strunskus T., Rastgoo A., Lahrood -. On-surface Ullmann polymerization via intermediate organometallic networks on Ag(111)[J]. Chem. Commun., 2014,50:7680-7682. doi: 10.1039/C4CC02757D

    69. [69]

      Wang W., Shi X., Wang S., Van Hove M.A., Lin N.. Single-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reaction[J]. J. Am. Chem. Soc., 2011,133:13264-13267. doi: 10.1021/ja204956b

    70. [70]

      Gao H.Y., Wagner H., Zhong D.. Glaser coupling at metal surfaces[J]. Angew. Chem. Int. Ed., 2013,52:4024-4028. doi: 10.1002/anie.v52.14

    71. [71]

      Sun Q., Zhang C., Li Z.. On-surface formation of one-dimensional polyphenylene through Bergman cyclization[J]. J. Am. Chem. Soc., 2013,135:8448-8451. doi: 10.1021/ja404039t

    72. [72]

      Sun Q., Cai L., Ma H., Yuan C., Xu W.. Dehalogenative homocoupling of terminal alkynyl bromides on Au(111):incorporation of acetylenic scaffolding into surface nanostructures[J]. ACS Nano, 2016,10:7023-7030. doi: 10.1021/acsnano.6b03048

    73. [73]

      Zhang Y.Q., Kepcija N., Kleinschrodt M.. Homo-coupling of terminal alkynes on a noble metal Surface[J]. Nat. Commun, 2012,31286. doi: 10.1038/ncomms2291

    74. [74]

      Schull G., Berndt R.. rientationally ordered (7×7) superstructure of C60 on Au (111)[J]. Phys. Rev. Lett, 2007,99226105. doi: 10.1103/PhysRevLett.99.226105

    75. [75]

      Cirera B., Zhang Y.Q., Björk J.. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Lett., 2014,14:1891-1897. doi: 10.1021/nl4046747

    76. [76]

      Colazzo L., Sedona F., Moretto A., Casarin M., Sambi M.. Metal-free on-surface photochemical homocoupling of terminal alkynes[J]. J. Am. Chem. Soc., 2016,138:10151-10156. doi: 10.1021/jacs.6b03589

    77. [77]

      Zhang X., Liao L., Wang S.. Polymerization or cyclic dimerization:solvent dependent homo-coupling of terminal alkynes at HOPG surface[J]. Sci. Rep, 2014,43899.  

    78. [78]

      Gao H.-Y., Zhong D., Mönig H.. Photochemical Glaser coupling at metal surfaces[J]. J. Phys. Chem. C, 2014,118:6272-6277.

    79. [79]

      Kanuru V.K., Kyriakou G., Beaumont S.K.. Sonogashira coupling on an extended gold surface in vacuo reaction of phenylacetylene with iodobenzene on Au(111)[J]. J. Am. Chem. Soc., 2010,132:8081-8086. doi: 10.1021/ja1011542

    80. [80]

      Sanchez C., Sanchez -, Orozco N., Holgado J.P.. Sonogashira cross-coupling and homo-coupling on a silver surface:chlorobenzene and phenylacetylene on Ag(100)[J]. J. Am. Chem. Soc., 2014,137:940-947.

    81. [81]

      Sánchez-Sánchez C., Yubero F., González-Elipe A.R.. The flexible surface revisited:adsorbate-induced reconstruction, homocoupling, and Sonogashira cross-coupling on the Au(100) Surface[J]. J. Phys. Chem. C, 2014,118:11677-11684.

    82. [82]

      Arado O.D., Mönig H., Wagner H.. On-surface azide alkyne cycloaddition on Au(111)[J]. ACS Nano, 2013,7:8509-8515. doi: 10.1021/nn4022789

    83. [83]

      Bebensee F., Bombis C., Vadapoo S.-R.. On-surface azide-alkyne cycloaddition on Cu(111):does it "click" in ultrahigh vacuum?[J]. J. Am. Chem. Soc, 2013,135:2136-2139. doi: 10.1021/ja312303a

  • 加载中
    1. [1]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    2. [2]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    3. [3]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    4. [4]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    5. [5]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    6. [6]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    7. [7]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    8. [8]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    11. [11]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    12. [12]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    15. [15]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    16. [16]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    17. [17]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    18. [18]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    19. [19]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    20. [20]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

Metrics
  • PDF Downloads(1)
  • Abstract views(679)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return