Citation: Zhang Xiao-Xiao, Jin Hong, Deng Yuan-Jie, Gao Xu-Heng, Li Yong, Zhao Yong-Tian, Tao Ke, Hou Tai-Ping. Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modified scaffold as potent antifungal agents[J]. Chinese Chemical Letters, ;2017, 28(8): 1731-1736. doi: 10.1016/j.cclet.2017.04.021 shu

Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modified scaffold as potent antifungal agents

  • Corresponding author: Jin Hong, jinhong@scu.edu.cn Hou Tai-Ping, houtplab@scu.edu.cn
  • 1These authors contributed equally to this work
  • Received Date: 8 January 2017
    Revised Date: 15 March 2017
    Accepted Date: 30 March 2017
    Available Online: 27 August 2017

Figures(7)

  • Twenty-seven novel pyrazole carboxamides with diarylamine-modified scaffold were designed, synthesized and characterized in detail via 1H NMR, 13C NMR, IR and ESI-HRMS. Preliminary bioassays showed that some of the target compounds exhibited good antifungal activity against Rhizoctonia solani, Rhizoctonia cerealis and Sclerotinia sclerotiorum. Among them, compound 9c-7 exhibited the highest antifungal activities against R. solani, R. cerealis and S. sclerotiorum in vitro with IC50 values of 0.013, 1.608 and 1.874 μg/mL, respectively. Notably, compound 9c-7 still presented the highest fungicidal activities against R. solani in vivo with an IC50 value of 22.21 μg/mL. Molecular docking simulation results reveal that compound 9c-7 binds well to the hydrophobic pockets of the receptor protein succinate dehydrogenase. This study suggests that compound 9c-7 could act as a potential fungicide to be used for further optimization.
  • 加载中
    1. [1]

      Schirra M., Aquino S.D., Cabras P.. Control of post harvest diseases of fruit by heat and fungicides:efficacy, residue levels, and residue persistence[J]. J. Agric. Food Chem., 2011,59:8531-8542. doi: 10.1021/jf201899t

    2. [2]

      Yang J.C., Zhang J.B., Chai B.S.. Progress of the development on the novel amides fungicides[J]. Agrochemicals, 2008,1:6-9.

    3. [3]

      H. Walter, Pyrazole carboxamide fungicides inhibiting succinate dehydrogenase, in: C. Lamberth, J. Dinges (Eds. ), Bioactive heterocyclic compound classes: agrochemicals, E-Publishing Inc. , Germany, 2012, pp. 175-193.

    4. [4]

      Walter H., Tobler H., Gribkov D.. Sedaxane, isopyrazam and solatenol®:novel broad-spectrum fungicides inhibiting succinate dehydrogenase (SDH)-synthesis challenges and biological aspects[J]. Chimia, 2015,69:425-434. doi: 10.2533/chimia.2015.425

    5. [5]

      Scalliet G., Bowler J., Luksch T.. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola[J]. PLoS One, 2012,7:341-344.  

    6. [6]

      R. Joachim, R. Heiko, C. Pierre-Yves, Modern crop protection compounds: succinate dehydrogenase inhibitors, 2nd ed. , Wiley, Germany, 2012.

    7. [7]

      B. C. Mac, The pesticide manual, Alton, Hants, UK, British Crop Protection Council, 2012, pp. 389.

    8. [8]

      B. A. Dreikorn, 3-Chloro-2, 6-dinitro-N-(substituted phenyl)-4-(trifluoromethyl)benzenamines, US Patent 4152460, 1979.

    9. [9]

      B. A. Dreikorn, K. E. Kramer, Diphenylamine compounds, US Patent 4407820, 1983.

    10. [10]

      B. A. Dreikorn, K. E. Kramer, D. F. Berard, et al. , Diphenylamines. I. Synthesis and structure-activity relationship development of novel N-(substituted-phenyl)-N-alkyl-2-(trifluoromethyl)-4, 6-dinitrobenzenamines leading to a potent miticide (El-462), in: D. R. Baker, J. G. Fenyes, J. J. Steffens (Eds. ), Synthesis and chemistry of agrochemicals Ⅲ, E-Publishing Inc. , Washington, 1992, pp. 336-341.

    11. [11]

      D. B. Allen, N-Alkyldiphenylamines, DE Patent 2642148, 1977.

    12. [12]

      D. J. Collins, J. W. Slater, J. D. Hunt, et al. , Herbicidal process using 2, 4-dinitro-6-trifluoroanilines, GB Patent 1544078, 1979.

    13. [13]

      Wang H.Y., Gao X.H., Zhang X.X.. Design, synthesis and antifungal activity of novel fenfuram-diarylamine hybrids, Bioorg[J]. Med. Chem. Lett., 2017,27:90-93. doi: 10.1016/j.bmcl.2016.11.026

    14. [14]

      G. F. Yang, L. Xiong, Q. Chen, Pyrazole amide compound containing diphenyl ether, and application thereof, and pesticide composition, CN Patent 104557709, 2013.

    15. [15]

      Wen F., Zhang H., Yu Z.Y.. Design, synthesis and antifungal/insecticidal evaluation of novel nicotinamide derivatives[J]. Pestic. Biochem. Physiol., 2010,982:248-253.

    16. [16]

      Pu T., Wang H.Y., Liu Y.. Design, synthesis and antifungal activity of novel 2-methyl-3-furancarboxamide derivatives[J]. J. Sichuan Univ. (Nat. Sci. Ed.), 2017,54:178-184.

    17. [17]

      Zhou G.P., Liu W., Jin H.. Sythesis and screening for potential against phytopathogenic fungi activity of novel amides[J]. J. Sichuan Univ. (Nat. Sci. Ed.), 2012,49:871-878.  

    18. [18]

      Chen M.J., Jin H., Tao K.. Synthesis and bioactivity evaluation of novel benzamide derivatives containing a diphenyl ether moiety[J]. J. Pestic. Sci., 2014,39:187-192.

    19. [19]

      Yu Z.Y., Shi G.Y., Sun Q.. Design, synthesis and in vitro antibacterial/antifungal evaluation of novel 1-ethyl-6-fluoro-1, 4-dihydro-4-oxo-7(1-piperazinyl) quinoline-3-carboxylic acid derivatives[J]. Eur. J. Med. Chem., 2009,44:4726-4733. doi: 10.1016/j.ejmech.2009.05.028

    20. [20]

      Wen F., Jin H., Tao K.. Design, synthesis and antifungal activity of novel furancarboxamide derivatives[J]. Eur. J. Med. Chem., 2016,120:244-251. doi: 10.1016/j.ejmech.2016.04.060

    21. [21]

      Chen X.L., Chen T.Q., Xiang Y.Q.. Metal-free regioselective hydrobromination of alkynes through C-H/C-Bractivation[J]. Tetrahedron Lett., 2014,55:4572-4575. doi: 10.1016/j.tetlet.2014.06.070

    22. [22]

      Liu W.Q., Megale V., Borriello L.. Synthesis and structure-activity relationship of non-peptidicantagonists of neuropilin-1 receptor[J]. Bioorg. Med. Chem. Lett., 2014,24:4254-4259. doi: 10.1016/j.bmcl.2014.07.028

    23. [23]

      Zhu Y.P., Sergeyev S., Franck P.. Amine activation:synthesis of N-(Hetero) arylamides from isothioureas and carboxylic acids[J]. Org. Lett., 2016,18:4602-4605. doi: 10.1021/acs.orglett.6b02247

    24. [24]

      Deng X.L., Xie J., Li Y.Q.. Design, synthesis and biological activity of novel substituted pyrazole amide derivatives targeting EcR/USP receptor[J]. Chin. Chem. Lett., 2016,27:566-570. doi: 10.1016/j.cclet.2016.02.009

    25. [25]

      Deng X.L., Zhang L., Hu X.P.. Target-based design, synthesis and biological activity of new pyrazole amide derivatives[J]. Chin. Chem. Lett., 2016,27:251-255. doi: 10.1016/j.cclet.2015.10.006

    26. [26]

      Bai Y.B., Zhang A.L., Tang J.J.. Synthesis and antifungal activity of 2-chloromethyl-1H-benzimidazole derivatives against phytopathogenic fungi in vitro[J]. J. Agric. Food Chem., 2013,61:2789-2795. doi: 10.1021/jf3053934

    27. [27]

      Xiao Y., Li H.X., Li C.. Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides[J]. FEMS Microbiol. Lett., 2013,339:130-136. doi: 10.1111/fml.2013.339.issue-2

    28. [28]

      Ye Y.H., Ma L., Dai Z.C.. Synthesis and antifungal activity of nicotinamide derivatives as succinate dehydrogenase inhibitors[J]. J. Agric. Food Chem., 2014,62:4063-4071. doi: 10.1021/jf405437k

    29. [29]

      Wang L.L., Li C., Zhang Y.. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi[J]. J. Agric. Food Chem., 2013,61:8632-8640. doi: 10.1021/jf402388x

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    4. [4]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    5. [5]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    6. [6]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    9. [9]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    10. [10]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    11. [11]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    14. [14]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    15. [15]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    16. [16]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    17. [17]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    18. [18]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    19. [19]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    20. [20]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

Metrics
  • PDF Downloads(1)
  • Abstract views(628)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return