Development of electron and hole selective contact materials for perovskite solar cells
- Corresponding author: Gao Peng, peng.gao@fjirsm.ac.cn
Citation: Yu Yaming, Gao Peng. Development of electron and hole selective contact materials for perovskite solar cells[J]. Chinese Chemical Letters, ;2017, 28(6): 1144-1152. doi: 10.1016/j.cclet.2017.04.020
W.S. Yang, J.H. Noh, N.J. Jeon, et al., Science 348(2015) 1234-1237.
doi: 10.1126/science.aaa9272
D. Bi, W. Tress, M.I. Dar, et al., Sci. Adv. 2(2016) e1501170-e1501170.
P. Gao, M. Grätzel, M.K. Nazeeruddin, Energy Environ. Sci. 7(2014) 2448-2463.
doi: 10.1039/C4EE00942H
J. Burschka, N. Pellet, S.J. Moon, et al., Nature 499(2013) 316-319.
doi: 10.1038/nature12340
M. Liu, M.B. Johnston, H.J. Snaith, Nature 501(2013) 395-398.
doi: 10.1038/nature12509
D. Liu, T.L. Kelly, Nat. Photonics 8(2013) 133-138.
doi: 10.1038/nphoton.2013.342
Z. Xiao, C. Bi, Y. Shao, et al., Energy Environ. Sci. 7(2014) 2619-2623.
doi: 10.1039/C4EE01138D
H.S. Ko, J.W. Lee, N.G. Park, J. Mater. Chem. A 3(2015) 8808-8815.
doi: 10.1039/C5TA00658A
N.J. Jeon, J.H. Noh, Y.C. Kim, et al., Nat. Mater. 13(2014) 897-903.
doi: 10.1038/nmat4014
P. Ganesan, K. Fu, P. Gao, et al., Energy Environ. Sci. 8(2015) 1986-1991.
doi: 10.1039/C4EE03773A
H. Li, K. Fu, A. Hagfeldt, et al., Angew. Chem. Int. Ed. 53(2014) 4085-4088.
doi: 10.1002/anie.201310877
Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photonics 9(2014) 106-112.
S. Ye, W. Sun, Y. Li, et al., Nano Lett. 15(2015) 3723-3728.
doi: 10.1021/acs.nanolett.5b00116
X. Xu, Z. Liu, Z. Zuo, et al., Nano Lett. 15(2015) 2402-2408.
doi: 10.1021/nl504701y
J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Energy Environ. Sci. 6(2013) 1739.
doi: 10.1039/c3ee40810h
D. Liu, J. Yang, T.L. Kelly, J. Am. Chem. Soc. 136(2014) 17116-17122.
doi: 10.1021/ja508758k
L. Etgar, P. Gao, Z. Xue, et al., J. Am. Chem. Soc. 134(2012) 17396-17399.
doi: 10.1021/ja307789s
M.A. Green, Phys. E Low-Dimens. Syst. Nanostruct. 14(2002) 11-17.
doi: 10.1016/S1386-9477(02)00354-5
Z. Yu, L. Sun, Adv. Energy Mater. 5(2015) 1500213.
doi: 10.1002/aenm.201500213
S. Ameen, M.A. Rub, S.A. Kosa, et al., ChemSusChem 9(2016) 10-27.
doi: 10.1002/cssc.201501228
G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, J. Mater. Chem. A 4(2016) 3970-3990.
doi: 10.1039/C5TA09011C
D. Bi, C. Yi, J. Luo, et al., Nat. Energy 1(2016) 16142.
doi: 10.1038/nenergy.2016.142
K. Rakstys, M. Saliba, P. Gao, et al., Angew. Chem. Int. Ed. 55(2016) 7464-7468.
doi: 10.1002/anie.201602545
K. Rakstys, S. Paek, M. Sohail, et al., J. Mater. Chem. A 4(2016) 18259-18264.
doi: 10.1039/C6TA09028A
M. Saliba, S. Orlandi, T. Matsui, Nat. Energy 1(2016) 15017.
doi: 10.1038/nenergy.2015.17
D. Bi, B. Xu, P. Gao, et al., Nano Energy 23(2016) 138-144.
doi: 10.1016/j.nanoen.2016.03.020
A. Abate, S. Paek, F. Giordano, et al., Energy Environ. Sci. 8(2015) 2946-2953.
doi: 10.1039/C5EE02014J
N.J. Jeon, J. Lee, J.H. Noh, et al., J. Am. Chem. Soc. 135(2013) 19087-19090.
doi: 10.1021/ja410659k
P. Qin, S. Paek, M.I. Dar, et al., J. Am. Chem. Soc. 136(2014) 8516-8519.
doi: 10.1021/ja503272q
K. Rakstys, A. Abate, M.I. Dar, et al., J. Am. Chem. Soc.137(2015) 16172-16178.
doi: 10.1021/jacs.5b11076
S. Paek, I. Zimmermann, P. Gao, et al., Chem. Sci. 7(2016) 6068-6075.
doi: 10.1039/C6SC01478J
S. Paek, M.A. Rub, H. Choi, et al., Nanoscale 8(2016) 6335-6340.
doi: 10.1039/C5NR05697G
S. Kazim, F.J. Ramos, P. Gao, et al., Energy Environ. Sci. 8(2015) 1816-1823.
doi: 10.1039/C5EE00599J
Y. Zhang, P. Gao, E. Oveisi, et al., J. Am. Chem. Soc. 138(2016) 14380-14387.
doi: 10.1021/jacs.6b08347
Y. Guo, C. Liu, K. Inoue, et al., J. Mater. Chem. A 2(2014) 13827-13830.
doi: 10.1039/C4TA02976C
Z. Zhu, Y. Bai, H.K.H. Lee, et al., Adv. Funct. Mater. 24(2014) 7357-7365.
doi: 10.1002/adfm.v24.46
P. Qin, N. Tetreault, M.I. Dar, et al., Adv. Energy Mater. 5(2015) 1400980.
doi: 10.1002/aenm.201400980
B. Cai, Y. Xing, Z. Yang, W.H. Zhang, J. Qiu, Energy Environ. Sci. 6(2013) 1480.
doi: 10.1039/c3ee40343b
A. Dubey, N. Adhikari, S. Venkatesan, et al., Sol. Energy Mater. Sol. Cells 145(2016) 193-199.
doi: 10.1016/j.solmat.2015.10.008
Y.S. Kwon, J. Lim, H.J. Yun, Y.H. Kim, T. Park, Energy Environ. Sci. 7(2014) 1454.
doi: 10.1039/c3ee44174a
J.H. Heo, S.H. Im, J.H. Noh, et al., Nat. Photonics 7(2013) 486-491.
doi: 10.1038/nphoton.2013.80
W. Nie, H. Tsai, R. Asadpour, et al., Science 347(2015) 522-525.
doi: 10.1126/science.aaa0472
J. Seo, N.J. Jeon, W.S. Yang, et al., Adv. Energy Mater. 5(2015) 1501320.
doi: 10.1002/aenm.201501320
F. Javier Ramos, M. Ince, M. Urbani, et al., DaltonTrans. 44(2015) 10847-10851.
doi: 10.1039/C5DT00396B
P. Gao, K.T. Cho, A. Abate, et al., Phys. Chem. Chem. Phys. 18(2016) 27083-27089.
doi: 10.1039/C6CP03396B
H.H. Chou, Y.H. Chiang, M.H. Li, et al., ACS Energy Lett. (2016) 956-962.
Calió L., S. .Kazim, Grätzel M. S. Ahmad, Angew[J]. Chem. Int.Ed, 2016,55:14522-14545. doi: 10.1002/anie.201601757
J. Liu, Y. Wu, C. Qin, et al., Energy Environ. Sci. 7(2014) 2963.
doi: 10.1039/C4EE01589D
Z. Li, Z. Zhu, C.C. Chueh, et al., J. Am. Chem. Soc. 138(2016) 11833-11839.
doi: 10.1021/jacs.6b06291
F. Zhang, C. Yi, P. Wei, et al., Adv. Energy Mater. 6(2016) 1600401.
doi: 10.1002/aenm.201600401
F. Zhang, X. Liu, C. Yi, et al., ChemSusChem 9(2016) 2578-2585.
doi: 10.1002/cssc.201600905
X. Zhao, F. Zhang, C. Yi, et al., J. Mater. Chem. A 4(2016) 16330-16334.
doi: 10.1039/C6TA05254A
D. Bi, A. Mishra, P. Gao, et al., ChemSusChem 9(2016) 433-438.
doi: 10.1002/cssc.201501510
N.J. Jeon, J.H. Noh, W.S. Yang, et al., Nature 517(2015) 476-480.
doi: 10.1038/nature14133
A. Abrusci, S.D. Stranks, P. Docampo, et al., Nano Lett. 13(2013) 3124-3128.
doi: 10.1021/nl401044q
S. Ryu, J.H. Noh, N.J. Jeon, et al., Energy Environ. Sci. 7(2014) 2614.
doi: 10.1039/C4EE00762J
K.T. Cho, K. Rakstys, M. Cavazzini, et al., Nano Energy 30(2016) 853-857.
doi: 10.1016/j.nanoen.2016.09.008
C.V. Kumar, G. Sfyri, D. Raptis, E. Stathatos, P. Lianos, RSC Adv. 5(2015) 3786-3791.
doi: 10.1039/C4RA14321C
F. Ghani, J. Kristen, H. Riegler, J. Chem. Eng. Data 57(2012) 439-449.
doi: 10.1021/je2010215
M. Li, Y. Li, S. Sasaki, et al., ChemSusChem 9(2016) 2862-2869.
doi: 10.1002/cssc.201601069
M. Xiao, M. Gao, F. Huang, et al., ChemNanoMat 2(2016) 182-188.
doi: 10.1002/cnma.201500223
J.A. Christians, R.C.M. Fung, P.V. Kamat, J. Am. Chem. Soc. 136(2014) 758-764.
doi: 10.1021/ja411014k
P. Qin, S. Tanaka, S. Ito, et al., Nat. Commun. 5(2014) 1-6.
Z. Zhu, Y. Bai, T. Zhang, et al., Angew. Chem.-Int. Ed. 53(2014) 12571-12575.
K.C. Wang, J.Y. Jeng, P.S. Shen, et al., Sci. Rep. 4(2014) 4756.
L. Hu, J. Peng, W. Wang, et al., ACS Photonics 1(2014) 547-553.
doi: 10.1021/ph5000067
N.G. Park, J. Phys, Chem. Lett. 4(2013) 2423-2429.
T. Leijtens, S.D. Stranks, G.E. Eperon, et al., ACS Nano. 8(2014) 7147-7155.
doi: 10.1021/nn502115k
H.S. Kim, C.R. Lee, J.H. Im, et al., Sci. Rep. 2(2012) 591.
H.S. Kim, J.W. Lee, N. Yantara, et al., Nano Lett. 13(2013) 2412-2417.
doi: 10.1021/nl400286w
X. Gao, J. Li, J. Baker, et al., Chem. Commun. (Camb.) 50(2014) 6368-6371.
doi: 10.1039/C4CC01864H
S.K. Pathak, A. Abate, P. Ruckdeschel, et al., Adv. Funct. Mater. 24(2014) 6046-6055.
doi: 10.1002/adfm.201401658
H. Zhou, Q. Chen, G. Li, et al., Science 345(2014) 542-546.
doi: 10.1126/science.1254050
P. Qin, A.L. Domanski, A.K. Chandiran, et al., Nanoscale 6(2014) 1508-1514.
doi: 10.1039/C3NR05884K
M.H. Kumar, N. Yantara, S. Dharani, et al., Chem. Commun. 49(2013) 11089-11091.
doi: 10.1039/c3cc46534a
D.Y. Son, J.H. Im, H.S. Kim, N.G. Park, J. Phys. Chem. C 118(2014) 16567-16573.
doi: 10.1021/jp412407j
X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, Chem. Commun. 50(2014) 14405-14408.
doi: 10.1039/C4CC04685D
Y. Li, J. Zhu, Y. Huang, et al., RSC Adv 5(2015) 28424-28429.
doi: 10.1039/C5RA01540E
J. Song, E. Zheng, J. Bian, et al., J. Mater. Chem. A 3(2015) 10837-10844.
doi: 10.1039/C5TA01207D
W. Ke, G. Fang, Q. Liu, et al., J. Am. Chem. Soc. 137(2015) 6730-6733.
doi: 10.1021/jacs.5b01994
J.P. Correa Baena, L. Steier, W. Tress, et al., Energy Environ. Sci 8(2015) 2928-2934.
doi: 10.1039/C5EE02608C
J.Y. Jeng, Y.F. Chiang, M.H. Lee, et al., Adv. Mater. 25(2013) 3727-3732.
doi: 10.1002/adma.v25.27
O. Malinkiewicz, A. Yella, Y.H. Lee, et al., Nat. Photonics 8(2014) 128-132.
I. Nakamura, N. Negishi, S. Kutsuna, et al., J. Mol. Catal. A Chem. 161(2000) 205-212.
doi: 10.1016/S1381-1169(00)00362-9
Y. Ogomi, A. Morita, S. Tsukamoto, et al., J. Phys. Chem. C 118(2014) 16651-16659.
doi: 10.1021/jp412627n
K. Wojciechowski, S.D. Stranks, A. Abate, et al., ACS Nano 8(2014) 12701-12709.
doi: 10.1021/nn505723h
Z. Zhu, J. Ma, Z. Wang, et al., J. Am Chem. Soc. 136(2014) 3760-3763.
doi: 10.1021/ja4132246
T. Liu, D. Kim, H. Han, et al., Nanoscale 7(2015) 10708-10718.
doi: 10.1039/C5NR01433F
J.S. Yeo, R. Kang, S. Lee, et al., Nano Energy 12(2015) 96-104.
doi: 10.1016/j.nanoen.2014.12.022
C. Wang, Y. Tang, Y. Hu, et al., RSC Adv. 5(2015) 52041-52047.
doi: 10.1039/C5RA09001F
S. Ito, S. Tanaka, K. Manabe, H. Nishino, J. Phys. Chem. C 118(2014) 16995-17000.
doi: 10.1021/jp500449z
G.S. Han, H.S. Chung, B.J. Kim, et al., J. Mater. Chem. A 3(2015) 9160-9164.
doi: 10.1039/C4TA03684K
Y. Ogomi, K. Kukihara, S. Qing, et al., ChemPhysChem 15(2014) 1062-1069.
doi: 10.1002/cphc.201301153
Juarez-Perez E.J., Wubler M. F. Fabregat-Santiago[J]. J. Phys. Chem. Lett, 2014,5:680-685.
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Xinyi Luo , Ke Wang , Yingying Xue , Xiaobao Cao , Jianhua Zhou , Jiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237