Citation: Wang Wei-Jia, Wang Yan, Xu Qian, Ju Huan-Xin, Wang Tao, Tao Zhi-Jie, Hu Shan-Wei, Zhu Jun-Fa. Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles[J]. Chinese Chemical Letters, ;2017, 28(8): 1760-1766. doi: 10.1016/j.cclet.2017.04.012 shu

Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles

  • Corresponding author: Zhu Jun-Fa, jfzhu@ustc.edu.cn; junfa_zhu@yahoo.com
  • Received Date: 30 January 2017
    Revised Date: 14 March 2017
    Accepted Date: 31 March 2017
    Available Online: 17 August 2017

Figures(5)

  • The interaction of Co with ceria thin films and its influence on the sintering behavior of Au were investigated by scanning tunneling microscopy (STM), synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The strong interaction between Co and CeO2(111) leads to oxidation of Co to Co2+ at 300 K, accompanied by partial reduction of ceria surface at low Co coverages. Subsequent Co deposition results in an increasing fraction of metallic Co. Annealing to high temperatures induces Co2+ ions diffuse into the CeO2 film, while the small metallic Co islands agglomerate into larger ones. The bimetallic Co-Au particles were prepared by deposition of Au on the existing Co particles on ceria surfaces. The sintering behavior of Co-Au bimetallic surfaces is found to be highly determined by the stoichiometry of ceria supports. The addition of Co to the Au/CeO2 surface suppresses the sintering of Au particles at high temperatures in comparison with that of pure Au particles. However, Au particles are less stable on the Co/CeO1.82 layer than on CeO1.82 surface.
  • 加载中
    1. [1]

      Trovarelli A.. Catalyticpropertiesof ceria and CeO2-containing materials[J]. Catal. Rev. Sci. Eng., 1996,38:439-520. doi: 10.1080/01614949608006464

    2. [2]

      Campbell C.T., Peden C.H.F.. Chemistry. Oxygenvacancies and catalysis on ceria surfaces[J]. Science, 2005,309:713-714. doi: 10.1126/science.1113955

    3. [3]

      Pozdnyakova-Tellinger O., Teschner D., Kroehnert J.. Surface waterassisted preferential CO oxidation on Pt/CeO2 catalyst[J]. J. Phys. Chem. C, 2007,111:5426-5431. doi: 10.1021/jp0669862

    4. [4]

      Hou T.F., Yu B., Zhang S.Y.. Hydrogen production from ethanol steam reforming over Rh/CeO2 catalyst[J]. Catal. Commun., 2015,58:137-140. doi: 10.1016/j.catcom.2014.09.020

    5. [5]

      Wieder N.L., Cargnello M., Bakhmutsky K.. Studyofthewater-gas-shiftreaction on Pd@CeO2/Al2O3 core-shell catalysts[J]. J. Phys. Chem. C, 2011,115:915-919. doi: 10.1021/jp102965e

    6. [6]

      Kaspar J., Fornasiero P., Graziani M.. Use of CeO2-based oxides in the three-way catalysis[J]. Catal. Today, 1999,50:285-298. doi: 10.1016/S0920-5861(98)00510-0

    7. [7]

      Vari G., Ovari L., Papp C.. The interaction of cobalt with CeO2(111) prepared on Cu(111)[J]. J. Phys. Chem. C, 2015,119:9324-9333. doi: 10.1021/acs.jpcc.5b00626

    8. [8]

      Conesa J.C., Martinez-Arias A., Fernandez-Garcia M.. Surface structure and redox chemistry of ceria-containing automotive catalytic systems[J]. Res. Chem. Intermed., 2000,26:103-111. doi: 10.1163/156856700X00138

    9. [9]

      Royer S., Duprez D.. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. Chemcatchem, 2011,3:24-65. doi: 10.1002/cctc.201000378

    10. [10]

      Martono E., Hyman M.P., Vohs J.M.. Reaction pathways for ethanol on model Co/ZnO(0001) catalysts[J]. PCCP, 2011,13:9880-9886. doi: 10.1039/c1cp20132h

    11. [11]

      Batista M.S., Santos R.K.S., Assaf E.M.. Characterization of the activityand stability of supported cobalt catalysts for the steam reforming of ethanol[J]. J. Power Sources, 2003,124:99-103. doi: 10.1016/S0378-7753(03)00599-8

    12. [12]

      Song H., Ozkan U.S.. The role of impregnation medium on the activity of ceriasupported cobalt catalysts for ethanol steam reforming[J]. J. Mol. Catal. A:Chem., 2010,318:21-29. doi: 10.1016/j.molcata.2009.11.003

    13. [13]

      Bayram B., Soykal I.I., von Deak D.. Ethanol steam reforming over Cobased catalysts:investigation of cobalt coordination environment under reaction conditions[J]. J. Catal., 2011,284:77-89. doi: 10.1016/j.jcat.2011.09.001

    14. [14]

      Shimura K., Miyazawa T., Hanaoka T.. Fischer-Tropschsynthesis over TiO2 supported cobalt catalyst:effect of TiO2 crystal phase and metal ion loading[J]. Appl. Catal. A:Gen., 2013,460:8-14.

    15. [15]

      Yu S.Y., Huang W.L., Ma Y.. Characterization of cobalt-based catalyst supported on CeO2 nanocubes for Fischer-Tropsch synthesis[J]. Integr. Ferroelectr., 2012,138:32-37. doi: 10.1080/10584587.2012.688425

    16. [16]

      Wang J., Shen M., Wang J.. CeO2-CoOx mixed oxides:structural characteristics and dynamic storage/release capacity[J]. Catal. Today, 2011,175:65-71. doi: 10.1016/j.cattod.2011.03.004

    17. [17]

      Li G., Wang Q., Zhao B.. Modification of Ce0.67Zr0.33O2 mixed oxides by coprecipitated/impregnated Co:effect on the surface and catalytic behavior of Pd only three-way catalyst[J]. J. Mol. Catal. A:Chem., 2010,326:69-74. doi: 10.1016/j.molcata.2010.04.008

    18. [18]

      Liotta L.F., Di Carlo G., Pantaleo G.. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 compositeoxides for methane combustion:influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture[J]. Appl. Catal. B:Environ., 2007,70:314-322. doi: 10.1016/j.apcatb.2005.12.023

    19. [19]

      Zou Z.Q., Meng M., Li Q.. Surfactants-assisted synthesis and characterizations of multicomponent mesoporous materials Co-Ce-Zr-O and Pd/Co-Ce-Zr-O used for low-temperature CO oxidation[J]. Mater. Chem. Phys., 2008,109:373-380. doi: 10.1016/j.matchemphys.2007.12.004

    20. [20]

      Luo J.Y., Meng M., Yao J.S.. One-step synthesis of nanostructured Pddoped mixed oxides MOx-CeO2(M=Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation[J]. Appl. Catal. B:Environ., 2009,87:92-103. doi: 10.1016/j.apcatb.2008.08.017

    21. [21]

      Camellone M.F., Fabris S.. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts:activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms[J]. J. Am. Chem. Soc., 2009,131:10473-10483. doi: 10.1021/ja902109k

    22. [22]

      Baron M., Bondarchuk O., Stacchiola D.. Interaction of gold with cerium oxide supports:CeO2(111) thin films vs CeOx nanoparticles[J]. J. Phys. Chem. C, 2009,113:6042-6049. doi: 10.1021/jp9001753

    23. [23]

      Fu Q., Saltsburg H., Flytzani-Stephanopoulos M.. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003,301:935-938. doi: 10.1126/science.1085721

    24. [24]

      Ilieva L., Pantaleo G., Nedyalkova R.. NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+(Me=Al orlanthanides):effectof waterin the feed gas[J]. Appl. Catal. B:Environ., 2009,90:286-294. doi: 10.1016/j.apcatb.2009.03.021

    25. [25]

      Galhenage R.P., Ammal S.C., Yan H.. Nucleation, growth, and adsorbateinduced changes in composition for Co-Au bimetallic clusters on TiO2[J]. J. Phys. Chem. C, 2012,116:24616-24629. doi: 10.1021/jp307888p

    26. [26]

      Reina T.R., Moreno A.A., Ivanova S.. Influence of vanadium or cobalt oxides on the CO oxidation behavior of Au/MOx/CeO2-Al2O3 systems[J]. Chemcatchem, 2012,4:512-520. doi: 10.1002/cctc.v4.4

    27. [27]

      Gamboa-Rosales N.K., Ayastuy J.L., Boukha Z.. Ceria-supported Au-CuO and Au-Co3O4 catalysts for CO oxidation:an 18O/16O isotopic exchange study[J]. Appl. Catal. B:Environ., 2015,168-169:87-97. doi: 10.1016/j.apcatb.2014.12.020

    28. [28]

      Wang H., Zhu H., Qin Z.. Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream[J]. J. Catal., 2009,264:154-162. doi: 10.1016/j.jcat.2009.04.003

    29. [29]

      Gamboa-Rosales N.K., Ayastuy J.L., Iglesias-González A.. Oxygenenhanced WGS over ceria-supported Au-Co3O4 bimetallic catalysts[J]. Chem. Eng. J., 2012,207-208:49-56. doi: 10.1016/j.cej.2012.06.142

    30. [30]

      Ilieva L., Petrova P., Tabakova T.. Gold catalysts on ceria doped with MeOx (Me=Fe, Mn, Co and Sn) for complete benzene oxidation:effect of composition and structure of the mixed supports[J]. React. Kinet. Mech. Catal., 2012,105:23-37. doi: 10.1007/s11144-011-0368-2

    31. [31]

      Ilieva L., Petrova P., Tabakova T.. Relationship between structural properties and activity in complete benzene oxidation over Au/CeO2-CoOx catalysts[J]. Catal. Today, 2012,187:30-38. doi: 10.1016/j.cattod.2012.03.006

    32. [32]

      Romeo M., Bak K., Elfallah J.. XPS study of the reduction of cerium dioxide[J]. Surf. Interface Anal., 1993,20:508-512. doi: 10.1002/(ISSN)1096-9918

    33. [33]

      Mullins D.R., Radulovic P.V., Overbury S.H.. Ordered cerium oxide thin films grown on Ru(0001) and Ni(111)[J]. Surf. Sci., 1999,429:186-198. doi: 10.1016/S0039-6028(99)00369-6

    34. [34]

      Kong D.D., Wang G.D., Pan Y.H.. Growth, structure, and stability of Ag on CeO2(111):synchrotron radiation photoemission studies[J]. J. Phys. Chem. C, 2011,115:6715-6725. doi: 10.1021/jp112392y

    35. [35]

      Nilekar A.U., Xu Y., Zhang J.. Bimetallic and ternary alloys for improved oxygen reduction catalysis[J]. Top. Catal., 2007,46:276-284. doi: 10.1007/s11244-007-9001-z

    36. [36]

      Banik S., Barman S., Rai S.K.. Electronic structure of buried Co-Cu interface studied with photoemission spectroscopy[J]. J. Appl. Phys., 2012,1125.

    37. [37]

      Óvári L., Krick Calderon S., Lykhach Y.. Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO2(111)[J]. J. Catal., 2013,307:132-139. doi: 10.1016/j.jcat.2013.07.015

    38. [38]

      Hyman M.P., Vohs J.M.. Reaction of ethanol on oxidized and metallic cobalt surfaces[J]. Surf. Sci., 2011,605:383-389. doi: 10.1016/j.susc.2010.11.005

    39. [39]

      Martono E., Vohs J.M.. Supporteffects in cobalt-based ethanol steamreforming catalysts:reaction of ethanol on Co/CeO2/YSZ(100) model catalysts[J]. J. Catal., 2012,291:79-86. doi: 10.1016/j.jcat.2012.04.010

    40. [40]

      Lin S.S.Y., Kim D.H., Engelhard M.H.. Water-induced formation of cobalt oxides over supported cobalt/ceria-zirconia catalysts under ethanol-steam conditions[J]. J. Catal., 2010,273:229-235. doi: 10.1016/j.jcat.2010.05.016

    41. [41]

      Skriver H.L., Rosengaard N.M.. Surface-energy and work fuction of elemental metals[J]. Phys. Rev. B, 1992,46:7157-7168. doi: 10.1103/PhysRevB.46.7157

    42. [42]

      Zhou G.L., Yang M.H., Flynn C.P.. Epitaxial growth of metastable Co-Cu alloys by a surface pump mechanism[J]. Phys. Rev. Lett., 1996,77:4580-4583. doi: 10.1103/PhysRevLett.77.4580

    43. [43]

      Zhou Y.H., Peterson E.W., Zhou J.. Growth and structure of Ni-Au bimetallic particles on reducible CeO2(111)[J]. Top. Catal., 2015,58:134-142. doi: 10.1007/s11244-014-0352-y

    44. [44]

      Galhenage R.P., Yan H., Ahsen A.S.. Understanding the growth and chemical activity of Co-Pt bimetallic clusters on TiO2(110):CO adsorption and methanol reaction[J]. J. Phys. Chem. C, 2014,118:17773-17786. doi: 10.1021/jp505003s

    45. [45]

      Xu Q., Hu S.W., Cheng D.L.. Growth and electronic structure of Sm on thin Al2O3/Ni3Al(111) films[J]. J. Chem. Phys., 2012,136.

    46. [46]

      Wang W.J., Hu S.W., Han Y.. Interaction of Zr with oxidized and partially reduced ceria thin films[J]. Surf. Sci., 2016,653:205-210. doi: 10.1016/j.susc.2016.07.007

    47. [47]

      Hu S.W., Wang Y., Wang W.J.. Ag nanoparticles on reducible CeO2(111) thin films:effect of thickness and stoichiometry of ceria[J]. J. Phys. Chem. C, 2015,119:3579-3588. doi: 10.1021/jp511691p

    48. [48]

      Horcas I., Fernandez R., Gomez-Rodriguez J.M.. WSXM:A software for scanning probemicroscopyand a toolfor nanotechnology[J]. Rev. Sci. Instrum., 2007,78013705. doi: 10.1063/1.2432410

  • 加载中
    1. [1]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    2. [2]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    3. [3]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    4. [4]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    5. [5]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    6. [6]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    7. [7]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    8. [8]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    9. [9]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    10. [10]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    11. [11]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    12. [12]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    13. [13]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    14. [14]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    15. [15]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

Metrics
  • PDF Downloads(6)
  • Abstract views(681)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return