Citation: Huang Xiao-Juan, Yao Xiang, Xu Wen-Zhan, Wang Kai, Huang Fei, Gong Xiong, Cao Yong. Inverted polymer solar cells with Zn2SnO4 nanoparticles as the electron extraction layer[J]. Chinese Chemical Letters, ;2017, 28(8): 1755-1759. doi: 10.1016/j.cclet.2017.04.011 shu

Inverted polymer solar cells with Zn2SnO4 nanoparticles as the electron extraction layer

  • Corresponding author: Gong Xiong, xgong@uakron.edu
  • 1 These authors made equal contribution to this work
  • Received Date: 30 January 2017
    Revised Date: 25 February 2017
    Accepted Date: 9 April 2017
    Available Online: 17 August 2017

Figures(6)

  • In this study, we report narrow-size distribution Zn2SnO4 (ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer (EEL) in the inverted polymer solar cells (i-PSCs). Moreover, poly[(9, 9-bis(3'-(N, N-dimethylamino)propyl)-2, 7-fluorene)-alt-2, 7-(9, 9-dioctylfluorene)] (PFN) is used to modify the surface properties of ZSO thin film. By using the ZSO NPs/PFN as the EEL, the i-PSCs fabricated by poly[4, 8-bis(2-ethylhexyloxyl)benzo[1, 2-b:4, 5-b'] dithio-phene-2, 6-diyl-altethylhexyl-3-fluorothithieno [3, 4-b]thiophene-2-carboxylate-4, 6-diyl] (PTB7) blended with (6, 6)-phenyl-C71-butyric acid methylester (PC71BM) bulk heterojunction (BHJ) composite, exhibits a power conversion efficiency (PCE) of 8.44%, which is nearly 10% enhancement as compared with that of 7.75% observed from the i-PSCs by PTB7:PC71BM BHJ composite using the ZnO/PFN EEL. The enhanced PCE is originated from improved interfacial contact between the EEL with BHJ active layer and good energy level alignment between BHJ active layer and the EEL. Our results indicate that we provide a simple way to boost efficiency of i-PSCs.
  • 加载中
    1. [1]

      Benka S.G.. The energy challenge[J]. Physics Today, 2002,55:38-39.

    2. [2]

      Youn H., Park H.J., Guo L.J.. Organic photovoltaic cells:from performance improvement to manufacturing processes[J]. Small, 2015,11:2228-2246. doi: 10.1002/smll.v11.19

    3. [3]

      Han C., Cheng Y., Chen L L.. Enhanced performance of inverted polymer solar cells by combining ZnO nanoparticles and poly (9, 9-bis(3'-(N, N-dimethylamino)propyl)-2, 7-fluorene)-alt-2, 7-(9, 9-dioctyfluorene) as electron transport layer[J]. ACS Appl. Mater. Int., 2016,8:3301-3307. doi: 10.1021/acsami.5b11140

    4. [4]

      Pivrikas A., Sariciftci N.S., Juška G., Österbacka R.. A review of charge transport and recombination in polymer/fullerene organic solar cells[J]. Prog. Photovoltaics:Res. Appl., 2007,15:677-696. doi: 10.1002/(ISSN)1099-159X

    5. [5]

      Li S., Liu W., Shi M.. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage[J]. Energy Environ. Sci., 2016,9:604-610. doi: 10.1039/C5EE03481G

    6. [6]

      Yip H.L., Hau S.K., Baek N.S.. Polymer solar cells that use self-assembledmonolayer-modified ZnO/metals as cathodes[J]. Adv. Mater., 2008,20:2376-2382. doi: 10.1002/adma.v20:12

    7. [7]

      Bulliard X., Ihn S.G., Yun S.. Enhanced performance in polymer solar cells by surface energy control[J]. Adv. Funct. Mater., 2010,20:4381-4387. doi: 10.1002/adfm.v20.24

    8. [8]

      Nian L., Zhang W., Zhu N.. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells[J]. J. Am. Chem. Soc., 2015,137:6995-6998. doi: 10.1021/jacs.5b02168

    9. [9]

      Liu C., Yi C., Wang K.. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer[J]. ACS Appl. Mater. Interfaces, 2015,7:4928-4935. doi: 10.1021/am509047g

    10. [10]

      Krebs F.C., Norrman K.. Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing[J]. Prog. Photovoltaics:Res. Appl., 2007,15:697-712. doi: 10.1002/(ISSN)1099-159X

    11. [11]

      Li G., Chu C.W., Shrotriya V.. Efficient inverted polymer solar cells[J]. Appl. Phys. Lett., 2006,88253503. doi: 10.1063/1.2212270

    12. [12]

      Hau S.K., Yip H.L., Acton O.. Interfacial modification to improve inverted polymer solar cells[J]. J. Mater. Chem., 2008,18:5113-5119. doi: 10.1039/b808004f

    13. [13]

      Hau S.K., Yip H.L., Baek N.S.. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer[J]. Appl. Phys. Lett., 2008,92253301. doi: 10.1063/1.2945281

    14. [14]

      Liao S.H., Jhuo H.J., Cheng Y.S.. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with lowbandgap polymer (PTB7-Th) for high performance[J]. Adv. Mater., 2013,25:4766-4771. doi: 10.1002/adma.v25.34

    15. [15]

      Chen S., Du X., Ye G.. Thermo-cleavable fullerene materials as buffer layers for efficient polymer solar cells[J]. J. Mater. Chem. A, 2013,1:11170-11176. doi: 10.1039/c3ta11811h

    16. [16]

      Kyaw A.K.K., Sun X.W., Jiang C.Y.. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer[J]. Appl. Phys. Lett., 2008,93221107. doi: 10.1063/1.3039076

    17. [17]

      Hsieh C.H., Cheng Y.J., Li P.J.. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer[J]. J. Am. Chem. Soc., 2010,132:4887-4893. doi: 10.1021/ja100236b

    18. [18]

      Stambolova I., Konstantinov K., Kovacheva D.. Spray pyrolysis preparation and humidity sensing characteristics of spinel zinc stannate thin films[J]. J. Solid State Chem., 1997,128:305-309. doi: 10.1006/jssc.1996.7174

    19. [19]

      Yu J.H., Choi G.M.. Current-voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors[J]. Sens. Actuat. B:Chem., 2001,72:141-148. doi: 10.1016/S0925-4005(00)00642-0

    20. [20]

      Belliard F., Connor P.A., Irvine J.T.S.. Novel tin oxide-based anodes for Li-ion batteries[J]. Solid State Ionics, 2000,135:163-167. doi: 10.1016/S0167-2738(00)00296-4

    21. [21]

      Rong A., Gao X.P., Li G.R.. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery[J]. J. Phys. Chem. B, 2006,110:14754-14760. doi: 10.1021/jp062875r

    22. [22]

      Lou X., Jia X., Xu J.. Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal, Mater[J]. Sci. Eng. A, 2006,432:221-225. doi: 10.1016/j.msea.2006.06.010

    23. [23]

      Cun W., Wang X.M., Zhao J.C.. Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4[J]. J. Mater. Sci., 2002,37:2989-2996. doi: 10.1023/A:1016077216172

    24. [24]

      Wang S., Yang Z., Lu M.. Coprecipitation synthesis of hollow Zn2SnO4 spheres[J]. Mater. Lett., 2007,61:3005-3008. doi: 10.1016/j.matlet.2006.07.197

    25. [25]

      Patterson A.L.. The scherrer formula for X-ray particle size determination[J]. Phys. Rev., 1939,56:978-982. doi: 10.1103/PhysRev.56.978

    26. [26]

      Wu Z., Song T., Xia Z.. Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated byin situcross-linked three-dimensional polymer network[J]. Nanotechnology, 2013,24484012. doi: 10.1088/0957-4484/24/48/484012

    27. [27]

      He Z., Zhang C., Xu X.. Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor[J]. Adv. Mater., 2011,23:3086-3089. doi: 10.1002/adma.v23.27

    28. [28]

      Shin S.S., Yang W.S., Noh J.H.. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C[J]. Nature Commun., 2015,67410. doi: 10.1038/ncomms8410

    29. [29]

      He Z., Zhong C., Su S.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nature Photon., 2012,6:593-597. doi: 10.1038/nphoton.2012.190

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    3. [3]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    6. [6]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    7. [7]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    8. [8]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    9. [9]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    10. [10]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    11. [11]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    12. [12]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    13. [13]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    14. [14]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    15. [15]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    18. [18]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    19. [19]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    20. [20]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

Metrics
  • PDF Downloads(3)
  • Abstract views(563)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return