Citation: Lu Wen-Jing, Huang Shi-Ze, Miao Ling, Liu Ming-Xian, Zhu Da-Zhang, Li Liang-Chun, Duan Hui, Xu Zi-Jie, Gan Li-Hua. Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes[J]. Chinese Chemical Letters, ;2017, 28(6): 1324-1329. doi: 10.1016/j.cclet.2017.04.007 shu

Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes

  • Corresponding author: Huang Shi-Ze, hsz@tongji.edu.cn Gan Li-Hua, ganlh@tongji.edu.cn
  • Received Date: 17 January 2017
    Revised Date: 8 March 2017
    Accepted Date: 10 April 2017
    Available Online: 9 June 2017

Figures(7)

  • We demonstrate a simple and highly efficient strategy to synthesize MnO2/nitrogen-doped ultramicroporous carbon nanospheres (MnO2/N-UCNs) for supercapacitor application. MnO2/N-UCNs were fabricated via a template-free polymerization of resorcinol/formaldehyde on the surface of phloroglucinol/terephthalaldehyde colloids in the presence of hexamethylenetetramine, followed by carbonization and then a redox reaction between carbons and KMnO4. As-prepared MnO2/N-UCNs exhibits regular ultramicropores, high surface area, nitrogen heteroatom, and high content of MnO2. A typical MnO2/N-UCNs with 57 wt.% MnO2 doping content (denoted as MnO2(57%)/N-UCNs) makes the most use of the synergistic effect between carbons and metal oxides. MnO2(57%)/N-UCNs as a supercapacitor electrode exhibits excellent electrochemical performance such as a high specific capacitance (401 F/g at 1.0 A/g) and excellent charge/discharge stability (86.3% of the initial capacitance after 10, 000 cycles at 2.0 A/g) in 1.0 mol/L Na2SO4 electrolyte. The well-designed and high-performance MnO2/N-UCNs highlight the great potential for advanced supercapacitor applications.
  • 加载中
    1. [1]

      (a) M. Liu, X. Ma, L. Gan, et al. , A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. 2(2014) 17107-17114 A;
      (b) H. Li, L. Jiang, Q. Cheng, et al. , MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes, Electrochim. Acta 164(2015) 252-259;
      (c) M. Wang, Y. Xu, Design and construction of three-dimensional graphene/conducting polymer for supercapacitors, Chin. Chem. Lett. 27(2016) 1437-1444;
      (d) F. Zhang, L. Qi, Recent progress in self-supported metal oxide nanoarray electrodes for advanced lithium-ion batteries, Adv. Sci. 3(2016) 1600049;
      (e) Y. Xiao, C. Long, M. Zheng, et al. , High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors, Chin. Chem. Lett. 25(2014) 865-868;
      (f) G. Y. Zeng, H. Wang, J. Guo, et al. , Fabrication of Nb2O5/C nanocomposites as a high performance anode for lithium ion battery, Chin. Chem. Lett. 28(2017) 755-758;
      (g) H. Wang, S. Dou, S. Wang, et al. , Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors, Int. J. Hydrogen Energy 42(2017) 6472-6481.

    2. [2]

      (a) L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38(2009) 2520-2531;
      (b) X. Wang, G. Shi, Flexible graphene devices related to energy conversion and storage, Energy Environ. Sci. 8(2015) 790-823;
      (c) Y. Dai, H. Jiang, Y. Hu, et al. , Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications, Ind. Eng. Chem. Res. 53(2014) 3125-3130;
      (d) M. Liu, L. Chen, D. Zhu, et al. , Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes, Chin. Chem. Lett. 27(2016) 399-404;
      (e) Z. Xu, J. Wang, Z. Hu, et al. , Structure evolutions and high electrochemical performances of carbon aerogels prepared from the pyrolysis of phenolic resin gels containing ZnCl2, Electrochim. Acta 231(2017) 601-608.

    3. [3]

      (a) H. Chang, H. Wu, Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications, Energy Environ. Sci. 6(2013) 3483-3507;
      (b) K. Pinkert, L. Giebeler, M. Herklotz, et al. , Functionalised porous nanocomposites: a multidisciplinary approach to investigate designed structures for supercapacitor applications, J. Mater. Chem. A 1(2013) 4904-4910.

    4. [4]

      (a) M. Liu, L. Gan, W. Xiong, et al. , Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A 2(2014) 2555-2562;
      (b) H. Yu, J. Wu, L. Fan, et al. , An efficient redox-mediated organic electrolyte for high-energy supercapacitor, J. Power Sources 248(2014) 1123-1126;
      (c) M. Liu, M. Shi, D. Zhu, et al. , Core-shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes, Chem. Eng. J. 313(2017) 518-526.

    5. [5]

      Wang G., Zhang L., Zhang J.. A review of electrode materials for electrochemical supercapacitors[J]. ChemInform, 2012,41:797-828.

    6. [6]

      (a) L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38(2009) 2520-2531;
      (b) W. Qu, Y. Xu, A. Lu, et al. , Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes, Bioresour. Technol. 189(2015) 285-291.

    7. [7]

      (a) D. Qu, S. Hang, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74(1998) 99-107;
      (b) M. Liu, J. Qian, Y. Zhao, et al. , Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A 3(2015) 11517-11526;
      (c) D. Zhu, Y. Wang, W. Lu, et al. , A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes, Carbon 111(2016) 667-674.

    8. [8]

      E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors Carbon 39(2001) 937-950.

    9. [9]

      (a) J. Chmiola, G. Yushin, Y. Gogotsi, et al. , Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313(2006) 1760-1763;
      (b) C. Vix-Guterl, E. Frackowiak, K. Jurewicz, et al. , Electrochemical energy storage in ordered porous carbon materials, Carbon 43(2005) 1293-1302.

    10. [10]

      Jeong U., Wang Y.L., Ibisate M.. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres[J]. ChemInform, 2006,15:1907-1921.

    11. [11]

      (a) H. K. Jeong, M. Jin, E. J. Ra, et al. , Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability, ACS Nano 4(2010) 1162-1166;
      (b) D. Wang, F. Li, Z. Chen, et al. , Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor, Chem. Mater. 20(2008) 7195-7200;
      (c) Q. Shi, R. Zhang, Y. Lv, et al. , Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor, Carbon 84(2015) 335-346;
      (d) L. Miao, H. Duan, M. Liu, et al. , Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors, Chem. Eng. J. 317(2017) 651-659;
      (e) L. Wang, C. Yang, S. Dou, et al. , Nitrogen-doped hierarchically porouscarbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery, Electrochim. Acta 219(2016) 592-603.

    12. [12]

      (a) C. D. Lokhande, D. P. Dubal, O. S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys. 11(2011) 255-270;
      (b) R. Bi, X. Wu, F. Cao, et al. , Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance, J. Phys. Chem. C 114(2010) 2448-2451.

    13. [13]

      (a) J. Ge, H. Yao, W. Hu, et al. , Facile dip coating processed graphene/MnO2, nanostructured sponges as high performance supercapacitor electrodes Nano Energy 2(2013) 505-513;
      (b) P. Wang, Y. Zhao, L. Wen, et al. , Ultrasound-microwave-assisted synthesis of MnO2 supercapacitor electrode materials, Ind. Eng. Chem. Res. 53(2014) 20116-20123.

    14. [14]

      (a) S. Li, C. Wang, Design and synthesis of hierarchically porous MnO2/carbon hybrids for high performance electrochemical capacitors, J. Colloid Interface Sci. 438(2015) 61-67;
      (b) Z. Lei, J. Zhang, X. Zhao, Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes, J. Mater. Chem. 22(2011) 153-160.

    15. [15]

      (a) L. Li, R. Li, S. Gai, et al. , MnO2 nanosheets grown on nitrogen-doped hollow carbon shells as a high-performance electrode for asymmetric supercapacitors, Chem. Eur. J. 21(2015) 7119-7126;
      (b) M. Yang, B. G. Choi, Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors, J. Electroanal. Chem. 776(2016) 134-138;
      (c) Y. Liu, X. Cai, B. Luo, et al. , MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes, Carbon 107(2016) 426-432.

    16. [16]

      (a) H. Xu, Z. Qu, C. Zong, et al. , MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury, Environ. Sci. Technol. 49(2015) 6823-6830;
      (b) Y. Zhao, Y. Meng, J. Peng, Carbon@MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials, J. Power Sources 259(2014) 219-226.

    17. [17]

      Feng X., Yan Z., Chen N.. The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors[J]. J. Mater. Chem. A, 2013,1:12818-12825. doi: 10.1039/c3ta12780j

    18. [18]

      (a) S. Chen, J. Zhu, X. Wu, et al. , Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano 4(2010) 2822-2830;
      (b) D. Portehault, S. Cassaignon, E. Baudrin, et al. , Morphology control of cryptomelane type MnO2 nanowires by soft chemistry. growth mechanisms in aqueous medium, Chem. Mater. 19(2007) 5410-5417.

    19. [19]

      Li Y., Wang G., Wei T.. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy, 2015,19:165-175.

    20. [20]

      Zhu D., Cheng K., Wang Y.. Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors[J]. Electrochim. Acta, 2017,224:17-24. doi: 10.1016/j.electacta.2016.12.023

    21. [21]

      (a) Y. He, W. Chen, J. Zhou, et al. , Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors, ACS Appl. Mater. Interfaces 6(2013) 210-218;
      (b) M. Liu, W. W. Tjiu, J. Pan, et al. , One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors, Nanoscale 6(2014) 4233-4242.

    22. [22]

      (a) J. H. Kim, D. Bhattacharjya, J. S. Yu, Synthesis of hollow TiO2@N-doped carbonwith enhanced electrochemical capacitance byan in situ hydrothermal process using hexamethylenetetramine, J. Mater. Chem. A 2(2014) 11472-11479;
      (b) W. Lu, M. Liu, L. Miao, et al. , Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes, Electrochim. Acta 205(2016) 132-141;
      (c) Z. Xu, Q. Guo, A simple method to prepare monodisperse and size-tunable carbon nanospheres from phenolic resin, Carbon 52(2013) 464-467.

  • 加载中
    1. [1]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    2. [2]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    3. [3]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    4. [4]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    10. [10]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    15. [15]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192

    16. [16]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    17. [17]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    18. [18]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

Metrics
  • PDF Downloads(1)
  • Abstract views(797)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return