Citation: Maraii Dhaou, Farjas Jordi, Fontrodona Xavier, Dammak Mohamed. Synthesis, structural study, thermal, optical properties and characterization of the new compound [C6H7N2O2]3TeCl5·2Cl[J]. Chinese Chemical Letters, ;2017, 28(8): 1773-1779. doi: 10.1016/j.cclet.2017.04.005 shu

Synthesis, structural study, thermal, optical properties and characterization of the new compound [C6H7N2O2]3TeCl5·2Cl

  • Corresponding author: Maraii Dhaou, 
  • Available Online: 17 August 2017

Figures(7)

  • The new organic-inorganic compound, [C6H7N2O2]3TeCl5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system(P-1) with the following parameters: a=10.5330 (11)Å, b=10.6663(11)Å, c=15.9751(16)Å, α=82.090(2)°, β=71.193(2)°, γ=68.284(2)° and Z=2. The final cycle of refinement led to R=0.057 and Rw=0.149. The crystal structure was stabilized by an extensive network of N-H…Cl and non-classical C-H…Cl hydrogen bonds between the cation and the anionic group. Several thermal analysis techniques such as thermogravimetric analysis, differential scanning calorimetric analysis and evolved gas analysis were used. We used isoconversional kinetics methods to determine the kinetics parameters. We observe that the decomposition of [C6H7N2O2]3TeCl5·2Cl entails the formation hydrochloric acid of nitroaniline as volatiles. The infrared spectra were recorded in the 4000-400 cm-1 frequency region. The Raman spectra were recorded in the external region of the anionic sublattice vibration 50-1500 cm-1. The optical band gap was calculated from the UV-Vis absorbance spectra using classical Tauc relation which was found to be 3.12 and 3.67 eV.
  • 加载中
    1. [1]

      Moulton B., Zaworotko M.J.. From molecules to crystal engineering:supramolecular isomerism and polymorphism in network solids[J]. Chem. Rev., 2001,101:1629-1658. doi: 10.1021/cr9900432

    2. [2]

      Kitagawa S., Kitaura R., Noro S.I.. Functional porous coordination polymers[J]. Angew. Chem. Int. Ed., 2004,43:2334-2375. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Dammak M., Mhiri T., Jaud J., Savariault J.M.. Structural study of the two new caesium sulfate and selenate tellurate Cs2SO4·Te(OH)6 and Cs2SO4·Te(OH)6[J]. Int. J. Inorg. Mater., 2001,3:861-873. doi: 10.1016/S1466-6049(01)00094-0

    4. [4]

      Brylev K.A., Mironov Y.V., Naumov N.G., Fedorov V.E., Ibers J.A.. New compounds from tellurocyanide rhenium cluster anions and 3d-transition metal cations coordinated with ethylenediamine[J]. Inorg. Chem., 2004,43:4833-4838. doi: 10.1021/ic040046j

    5. [5]

      Artemkina S.B., Naumov N.G., Virovets A.V., Fedorov V.E.. 3D-coordination cluster polymers[Ln(H2O)3Re6Te8(CN)6]×nH2O (Ln:La3+, Nd3+):direct structural analogy with the mononuclear LnM(CN)6×nH2O Family[J]. Cheminform, 2005,36. doi: 10.1002/chin.200510023

    6. [6]

      Bochmann M., Coleman A.P., Webb K.J., Hursthouse M.B., Mazid M.. Synthesis of sterically hindered tellurophenols and the structure of[Cd (μ-TeC6H2M3)2][J]. Angew. Chem. Int. Ed., 1991,30:973-975. doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Lee J., Freedman D., Melman J.H.. Trivalent lanthanide chalcogenolates:Ln(SePh)3, Ln2(EPh)6, Ln4(SPh)12, and [Ln(EPh)3]n (E=S. Se). How metal, chalcogen, and solvent influence structure[J]. Inorg. Chem., 1998,37:2512-2519. doi: 10.1021/ic9716161

    8. [8]

      Bird P.H., Kumar V., Pant B.C.. Crystal and molecular structures of the (4-alkoxyphenyl)tellurium (Ⅳ) trihalides:(4-EtOPh)TeCl3, (4-EtOPh)TeBr3, and (4-MeOPh)TeI3[J]. Inorg. Chem., 1980,19:2487-2493. doi: 10.1021/ic50211a002

    9. [9]

      Alcock N.W., Harrison W.D.. Structure of catena-μ-bromo-dibromo(phenyl)-tellurium(Ⅳ)[J]. Acta Cryst. B, 1982,38:2677-2679. doi: 10.1107/S0567740882009571

    10. [10]

      Janiak C.. Engineering coordination polymers towards applications[J]. Dalton Trans., 2003:2781-2804.  

    11. [11]

      Dimou A.D., Sakkas V.A., Albanis T.A.. Photodegradation of trifluralin in natural waters and soils:degradation kinetics and influence of organic matter[J]. Int. J. Environ. Anal. Chem., 2004,84:173-182. doi: 10.1080/0306731031000149660

    12. [12]

      Singh N., Ahmad A.. Synthesis and spectrophotometric studies of charge transfer complexes of p-nitroaniline with benzoic acid in different polar solvents[J]. J. Mol. Struct., 2014,1074:408-415. doi: 10.1016/j.molstruc.2014.05.076

    13. [13]

      Wang N.N., Zheng T., Jiang J.P., Wang P.. Cu(Ⅱ)-Fe(Ⅱ)-H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation[J]. Chem. Eng. J., 2015,260:386-392. doi: 10.1016/j.cej.2014.09.002

    14. [14]

      Zerkowski J.A., McDonald J.C., Whitesides G.M.. Investigations into the robustness of secondary and tertiary architecture of hydrogen-bonded crystalline tapes[J]. Chem. Mater., 1994,6:1250-1257. doi: 10.1021/cm00044a024

    15. [15]

      Janczak J., Perpétuo G.J.. Melaminium chloride hemihydrate[J]. Acta Crystallogr., 2001,57:1120-1122.  

    16. [16]

      Ratajczak-Sitarz M., Kałuski Z., Ostrowicz A., Bałoniak S.. Molecular and crystal structure of 3-(4-chlorophenylthio)-1-(2, 4-dinitrophenylamino)-pyrrolidine-2, 5-dione[J]. J. Crystallogr. Spectrosc. Res., 1990,20:535-539. doi: 10.1007/BF01221893

    17. [17]

      G. C. Pimental, A. L. Mc Clellan, The Hydrogen Bond, Freeman, San Fransisco, 1971.

    18. [18]

      Farjas J., Roura P.. Exact analytical solution for the Kissinger equation:determination of the peak temperature and general properties of thermally activated transformations[J]. Thermochim. Acta, 2014,598:51-58. doi: 10.1016/j.tca.2014.10.024

    19. [19]

      Vyazovkin S., Wight C.A.. Isothermal and nonisothermal reaction kinetics in solids:in search of ways toward consensus[J]. J. Phys. Chem. A, 1997,101:8279-8284.  

    20. [20]

      Vyazovkin S.. Thermal analysis[J]. Anal. Chem., 2010,82:4936-4949. doi: 10.1021/ac100859s

    21. [21]

      Farjas J., Roura P.. Isoconversional analysis of solid-state transformations. A critical review. Part Ⅲ. Isothermal and non isothermal predictions[J]. J. Therm. Anal. Calorim, 2012,109:183-191. doi: 10.1007/s10973-011-1642-2

    22. [22]

      Vyazovkin S., Wight C.A.. Kinetics in solids[J]. Annu. Rev. Phys. Chem., 1997,48:125-149. doi: 10.1146/annurev.physchem.48.1.125

    23. [23]

      Vyazovkin S.. On the phenomenon of variable activation energy for condensed phase reactions[J]. New J. Chem., 2000,24:913-917. doi: 10.1039/b004279j

    24. [24]

      Wilburn F.W.. Kinetics of overlapping reactions[J]. Thermochim. Acta, 2000,354:99-105. doi: 10.1016/S0040-6031(00)00455-X

    25. [25]

      Farjas J., Roura P.. Isoconversional analysis of solid state transformations. A critical review. Part Ⅱ. Complex transformations[J]. J. Therm. Anal. Calorim., 2011,105:767-773. doi: 10.1007/s10973-011-1447-3

    26. [26]

      Brown M., Dollimore D., Galwey A.. Theory of solid state reaction kinetics, in:C. H. Bamford, C.F.H. Tipper (Eds.), Comprehensive Chemical Kinetics, Vol 22, Reactions in The Solid State[J]. Elsevier, Amsterdam, 1980:pp. 41-113.  

    27. [27]

      J. Šesták, Thermophysical Properties of Solids, Their Measurements and Theoretical Thermal Analysis, Elsevier, Amsterdam, 1984.

    28. [28]

      Farjas J., Roura P.. Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution[J]. Acta Mater., 2006,54:5573-5579. doi: 10.1016/j.actamat.2006.07.037

    29. [29]

      Blaine R.L., Kissinger H.E.. Homer Kissinger and the Kissinger equation[J]. Thermochim. Acta, 2012,540:1-6. doi: 10.1016/j.tca.2012.04.008

    30. [30]

      Vyazovkin S., Burnham A.K., Criado J.M.. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochim. Acta, 2011,520:1-19. doi: 10.1016/j.tca.2011.03.034

    31. [31]

      Khawam A., Flanagan D.R.. Basics and applications of solid-state kinetics:a pharmaceutical perspective[J]. J. Pharm. Sci., 2006,95:472-498. doi: 10.1002/jps.20559

    32. [32]

      Mittemeijer E.J.. Analysis of the kinetics of phase transformations[J]. J. Mater. Sci., 1992,27:3977-3987. doi: 10.1007/BF01105093

    33. [33]

      Starink M.J.. On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature-dependent equilibrium state[J]. J. Mater. Sci., 1997,32:6505-6512. doi: 10.1023/A:1018655026036

    34. [34]

      Ozawa T.. Thermal analysis-review and prospect[J]. Thermochim. Acta, 2000,355:35-42. doi: 10.1016/S0040-6031(00)00435-4

    35. [35]

      Elder J.P.. The general applicability of the Kissinger equation in thermal analysis[J]. J. Therm. Anal., 1985,30:657-669. doi: 10.1007/BF01913612

    36. [36]

      Reich O., Hasche S., Büscher K., Beckmann I., Krebs B.. Neue oxoniumbromochalkogenate(Ⅳ)-darstellung, struktur und eigenschaften von [H3O] [TeBr5]·3C4H8O2 und [H3O]2[SeBr6][J]. Z. Anorgan. Allgem. Chem., 1996,622:1011-1018. doi: 10.1002/(ISSN)1521-3749

    37. [37]

      Krishnakumar V., Nagalakshmi R.. Studies on the first-order hyperpolarizability and terahertz generation in 3-nitroaniline[J]. Phys. B, 2008,403:1863-1869. doi: 10.1016/j.physb.2007.10.341

    38. [38]

      Karabacak M., Kose E., Atac A.. Molecular structure (monomeric and dimeric structure) and HOMO-LUMO analysis of 2-aminonicotinic acid:a comparison of calculated spectroscopic properties with FT-IR and UV-vis[J]. Spectrochim. Acta Part A, 2012,91:83-96. doi: 10.1016/j.saa.2012.01.072

    39. [39]

      Pietikäinen J., Maaninen A., Laitinen R.S., Oilunkaniemi R., Valkonen J.. Halogenation of tellurium by SO2Cl2. Formation and crystal structures of (H3O)[Te3Cl13]·1/2SO2. [(C4H8O)2H] [TeCl5]· (C4H8O), [(Me2SO)2H]2[TeCl6], and [Ni (NCCH3)6] [Te2Cl10][J]. Polyhedron, 2002,21:1089-1095. doi: 10.1016/S0277-5387(02)00909-9

    40. [40]

      Milne J.B., Gabe E.J., Bensimon C.. The structure of the tetrachlorohydroxotellurate(Ⅳ) anion in KTeC14(OH)·0.5H2O and KTeC14(OH)[J]. Can. J. Chem., 1991,69:648-652.

    41. [41]

      Jarraya K., Gublin N., Ghermani N., Mhiri T.. Decomposition behavior of the NaH2(PO4)0.48(AsO4)0.52·H2O compound above room temperature shown by the study of Raman X-ray powder and ac-conductivity[J]. IOP Conf. Ser.:Mater. Sci. Eng., 2012,28012046. doi: 10.1088/1757-899X/28/1/012046

    42. [42]

      Sangeetha V., Gayathri K., Krishnan P.. Growth optical, thermal, dielectric and microhardness characterizations of melaminium bis (trifluoroacetate) trihydrate single crystal[J]. J. Cryst. Growth, 2014,389:30-38. doi: 10.1016/j.jcrysgro.2013.11.026

    43. [43]

      Tauc J.. Amorphous and Liquid Semiconductors[J]. Springer-Verlag, U.S, 1974pp. 171.  

    44. [44]

      Tauc J., Grigorovici R., Vancu A.. Optical properties and electronic structure of amorphous germanium[J]. Phys. Status Solidi B, 1996,15:627-637.  

    45. [45]

      Rajesh P., Ramasamy P.. Growth of DL-malic acid-doped ammonium dihydrogen phosphate crystal and its characterization[J]. J. Cryst. Growth, 2009,311:3491-3497. doi: 10.1016/j.jcrysgro.2009.04.020

    46. [46]

      G. M. Sheldrick, SHELXS-97: Program for the Crystal Structure Determination, University of Göttingen, Germany, 1990.

    47. [47]

      G. M. Sheldrick, SHELXL-97: Program for the Crystal Structure Determination, University of Göttingen, Germany, 1997.

    48. [48]

      Farrugia L.J.. ORTEP-3 for windows-a version of ORTEP-Ⅲ with a graphical user interface (GUI)[J]. J. Appl. Cryst., 1997,30565.  

    49. [49]

      K. Brandenburg, Diamond Version 2. 0 Impact GbR, (1998) Bonn, Germany.

    50. [50]

      Friedman H.L.. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. J. Polym. Sci.:Polym. Symp, 1964,6:183-195.  

    51. [51]

      Farjas J., Roura P.. Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy[J]. J. Therm. Anal. Calorim, 2011,105:757-766. doi: 10.1007/s10973-011-1446-4

    52. [52]

      Kissinger H.E.. Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957,29:1702-1706. doi: 10.1021/ac60131a045

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    3. [3]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    4. [4]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    5. [5]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    6. [6]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    13. [13]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    14. [14]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    17. [17]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    18. [18]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

Metrics
  • PDF Downloads(0)
  • Abstract views(613)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return