Citation: Shen Yan-Fei, Zhang Cheng, Yan Chun-Guang, Chen Hui-Qin, Zhang Yuan-Jian. Fabrication of porous graphitic carbon nitride-titanium dioxide heterojunctions with enhanced photo-energy conversion activity[J]. Chinese Chemical Letters, ;2017, 28(6): 1312-1317. doi: 10.1016/j.cclet.2017.04.004 shu

Fabrication of porous graphitic carbon nitride-titanium dioxide heterojunctions with enhanced photo-energy conversion activity

  • Corresponding author: Shen Yan-Fei, Yanfei.Shen@seu.edu.cn
  • Received Date: 3 January 2017
    Revised Date: 21 February 2017
    Accepted Date: 4 April 2017
    Available Online: 4 June 2017

Figures(6)

  • Porous graphite-phase polymeric carbon nitride (GPPCN)/TiO2 donor-acceptor heterojunction was facilely fabricated through the combination of a template technique with a co-calcination process, which exhibited much higher photoelectric activity compared to pristine carbon nitride and TiO2. The precursor of porous GPPCN (pGPPCN), porous melem, was prepared by using a green template, calcium carbonate, which could be easily removed by diluted hydrochloride. The pGPPCN/TiO2 heterojunction was then obtained by the assembly and subsequent co-calcination of TiO2 nanoparticles with porous melem. The formation of pGPPCN/TiO2 donor-acceptor heterojunction prepared by this method showed improved surface area and light absorption. Moreover, the composite presented much higher photo-energy conversion activity than those of GPPCN, pGPPCN and TiO2, which could be mainly ascribed to the high charge carrier separation efficiency. This study provides a new approach for the design and development of various photocatalysts with high efficiency for applications in energy fields.
  • 加载中
    1. [1]

      Yu X.G., Marks T.J., Facchetti A.. Metal oxides for optoelectronic applications[J]. Nat. Mater., 2016,15:383-396. doi: 10.1038/nmat4599

    2. [2]

      Polman A., Knight M., Garnett E.C., Ehrler B., Sinke W.C.. Photovoltaic materials:present efficiencies and future challenges[J]. Science, 2016,352:307-317.  

    3. [3]

      Zhou Z., Shang Q., Shen Y.. Chemically modulated carbon nitride nanosheets for highly selective electrochemiluminescent detection of multiple metal-ions[J]. Anal. Chem., 2016,88:6004-6010. doi: 10.1021/acs.analchem.6b01062

    4. [4]

      Shang Q., Zhou Z., Shen Y.. Potential-modulated electrochemiluminescence of carbon nitride nanosheets for dual-signal sensing of metal ions[J]. ACS Appl. Mater. Interfaces, 2015,7:23672-23678. doi: 10.1021/acsami.5b07405

    5. [5]

      Tian J.Q., Liu Q., Asiri A.M., A.O. Al-Youbi, Sun X.P.. Ultrathin graphitic carbon nitride nanosheet:a highly efficient fluorosensor for rapid ultrasensitive detection of Cu2+[J]. Anal. Chem., 2013,85:5595-5599. doi: 10.1021/ac400924j

    6. [6]

      Shen Y.F., Nakanishi T.. Fullerene assemblies toward photo-energy conversions[J]. Phys. Chem. Chem. Phys., 2014,16:7199-7204. doi: 10.1039/C4CP00221K

    7. [7]

      Shen Y.F., Saeki A., Seki S.. Exfoliation of graphene and assembly formation with alkylated-C-60:a nanocarbon hybrid towards photo-energy conversion electrode devices[J]. Adv. Opt. Mater., 2015,3:925-930. doi: 10.1002/adom.201400619

    8. [8]

      Zhang Y.J., Mori T., Ye J.H., Antonietti M.. Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocurrent generation[J]. J. Am. Chem. Soc., 2010,132:6294-6295. doi: 10.1021/ja101749y

    9. [9]

      Wang Y., Zhang J.S., Wang X.C., Antonietti M., Li H.R.. Boron-and fluorinecontaining mesoporous carbon nitride polymers:metal-free catalysts for cyclohexane oxidation[J]. Angew. Chem. Int. Ed., 2010,49:3356-3359. doi: 10.1002/anie.201000120

    10. [10]

      Niu P., Yin L.C., Yang Y.Q., Liu G., Cheng H.M.. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies[J]. Adv. Mater., 2014,26:8046-8052. doi: 10.1002/adma.v26.47

    11. [11]

      Mou Z.G., Wu Y.J., Sun J.H.. TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation[J]. ACS Appl. Mater. Interfaces, 2014,6:13798-13806. doi: 10.1021/am503244w

    12. [12]

      Vinu A., Srinivasu P., Sawant D.P.. Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume[J]. Chem. Mater., 2007,19:4367-4372. doi: 10.1021/cm070657k

    13. [13]

      Wang X.C., Maeda K., Thomas A.. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009,8:76-80. doi: 10.1038/nmat2317

    14. [14]

      Zhang Y.J., Antonietti M.. Photocurrent generation by polymeric carbon nitride solids:an initial step towards a novel photovoltaic system[J]. Chem. Asian J., 2010,5:1307-1311.  

    15. [15]

      Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z.. Graphitic carbon nitride materials:controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy Environ. Sci., 2012,5:6717-6731. doi: 10.1039/c2ee03479d

    16. [16]

      Yan S.C., Li Z.S., Zou Z.G.. Photodegradation performance of γ-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009,25:10397-10401. doi: 10.1021/la900923z

    17. [17]

      Cui Q.L., Xu J.S., Wang X.Y.. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior[J]. Angew. Chem. Int. Ed., 2016,55:3672-3676. doi: 10.1002/anie.201511217

    18. [18]

      Shalom M., Inal S., Fettkenhauer C., Neher D., Antonietti M.. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers[J]. J. Am. Chem. Soc., 2013,135:7118-7121. doi: 10.1021/ja402521s

    19. [19]

      Cao S.W., Low J.X., Yu J.G., Jaroniec M.. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv. Mater., 2015,27:2150-2176. doi: 10.1002/adma.201500033

    20. [20]

      Ong W.J., Tan L.L., Ng Y.H., Yong S.T.. Chai S.P.[J]. Graphitic carbon nitride (γ-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability? Chem. Rev., 2016,116:7159-7329.

    21. [21]

      Dong Z., Wang T., Zhao J.. Catalytic performance of iron oxide loaded on electron-rich surfaces of carbon nitride[J]. J. Energy Chem., 2016,25:1021-1026. doi: 10.1016/j.jechem.2016.10.005

    22. [22]

      Wang J.H., Shen Y.F., Li Y., Liu S.Q., Zhang Y.J.. Crystallinity modulation of layered carbon nitride for enhanced photocatalytic activities[J]. Chem. Eur. J., 2016,22:12449-12454. doi: 10.1002/chem.v22.35

    23. [23]

      Xiang Q.J., Yu J.G., Jaroniec M.. Preparation and enhanced visible-light photocatalytic H-2-production activity of graphene/C3N4 composites[J]. J. Phys. Chem. C, 2011,115:7355-7363. doi: 10.1021/jp200953k

    24. [24]

      Zhang Y.J., Mori T., Ye J.H., Antonietti M.. Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocurrent generation[J]. J. Am. Chem. Soc., 2010,132:6294-6295. doi: 10.1021/ja101749y

    25. [25]

      Sagara N., Kamimura S., Tsubota T., Ohno T.. Photoelectrochemical CO2 reduction by a p-type boron-doped γ-C3N4 electrode under visible light[J]. Appl. Catal. B-Environ., 2016,192:193-198. doi: 10.1016/j.apcatb.2016.03.055

    26. [26]

      Yang Z., Zhang Y.J., Schnepp Z.. Soft and hard templating of graphitic carbon nitride[J]. J. Mater. Chem. A, 2015,3:14081-14092. doi: 10.1039/C5TA02156A

    27. [27]

      Zhang Y.J., Thomas A., Antonietti M., Wang X.C.. Activation of carbon nitride solids by protonation:morphology changes, enhanced ionic conductivity, and photoconduction experiments[J]. J. Am. Chem. Soc., 2009,131:50-51. doi: 10.1021/ja808329f

    28. [28]

      Yan H.J.. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H-2 evolution under visible light[J]. Chem. Commun., 2012,48:3430-3432. doi: 10.1039/c2cc00001f

    29. [29]

      Liu G., Niu P., Sun C.H.. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. J. Am. Chem. Soc., 2010,132:11642-11648. doi: 10.1021/ja103798k

    30. [30]

      Martin D.J., Qiu K.P., Shevlin S.A.. Highly efficient photocatalytic H-2 evolution from water using visible light and structure-controlled graphitic carbon nitride[J]. Angew. Chem. Int. Ed., 2014,53:9240-9245. doi: 10.1002/anie.201403375

    31. [31]

      Wang J.H., Zhang C., Shen Y.F.. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. J. Mater. Chem. A, 2015,3:5126-5131. doi: 10.1039/C4TA06778A

    32. [32]

      Hou J.G., Yang C., Cheng H.J.. High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting[J]. Energy Enviro. Sci., 2014,7:3758-3768. doi: 10.1039/C4EE02403F

    33. [33]

      Yan J., Chen Z.G., Ji H.Y.. Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity[J]. Chem. Eur. J., 2016,22:4764-4773. doi: 10.1002/chem.201503660

    34. [34]

      Chen X., Liu Q., Wu Q.L.. Incorporating graphitic carbon nitride (γ-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Adv. Funct. Mater., 2016,26:1719-1728. doi: 10.1002/adfm.v26.11

    35. [35]

      Pan C.S., Xu J., Wang Y.J., Li D., Zhu Y.F.. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Adv. Funct. Mater., 2012,22:1518-1524. doi: 10.1002/adfm.v22.7

    36. [36]

      Yu W., Xu D., Peng T.. Enhanced photocatalytic activity of γ-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO:a direct Z-scheme mechanism[J]. J. Mater. Chem. A, 2015,3:19936-19947. doi: 10.1039/C5TA05503B

    37. [37]

      Na Y., Hu B., Yang Q.L.. CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting[J]. Chin. Chem. Lett., 2015,26:141-144. doi: 10.1016/j.cclet.2014.09.011

    38. [38]

      Shi Y., Li H.Y., Wang L., Shen W., Chen H.Z.. Novel α-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance[J]. ACS Appl. Mater. Interfaces, 2012,4:4800-4806. doi: 10.1021/am3011516

    39. [39]

      Tian J., Zhao Z.H., Kumar A., Boughton R.I., Liu H.. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures:a review[J]. Chem. Soc. Rev., 2014,43:6920-6937. doi: 10.1039/C4CS00180J

    40. [40]

      Xu H., Ouyang S.X., Liu L.Q.. Recent advances in TiO2-based photocatalysis[J]. J. Mater. Chem. A, 2014,2:12642-12661. doi: 10.1039/C4TA00941J

    41. [41]

      Liu J.M., Zhang Q.C., Yang J.C.. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis[J]. Chem. Commun., 2014,50:13971-13974. doi: 10.1039/C4CC05544F

    42. [42]

      Ma W.G., Wang L.N., Zhang N.. Biomolecule-free, selective detection of odiphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform[J]. Anal. Chem., 2015,87:4844-4850. doi: 10.1021/acs.analchem.5b00315

    43. [43]

      Li J., Xu Y., Yue W.. Synthesis and study of Bi2Ti2O7/TiO2 composites as efficient visible-light-active photocatalysts in the reduction of aqueous Cr(Ⅵ)[J]. Chin. Chem. Lett., 2016,27:867-870. doi: 10.1016/j.cclet.2016.01.031

    44. [44]

      Sridharan K., Jang E., Park T.J.. Novel visible light active graphitic C3N4-TiO2 composite photocatalyst:synergistic synthesis growth and photocatalytic treatment of hazardous pollutants[J]. Appl. Catal. B-Environ., 2013,142:718-728.

    45. [45]

      Xu J., Wang G., Fan J.. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells[J]. J. Power Sources, 2015,274:77-84. doi: 10.1016/j.jpowsour.2014.10.033

    46. [46]

      Yu J.G., Wang S.H., Low J.X., Xiao W.. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Phys. Chem. Chem. Phys., 2013,15:16883-16890. doi: 10.1039/c3cp53131g

    47. [47]

      Pany S., Parida K.M.. A facile in situ approach to fabricate N, S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution[J]. Phys. Chem. Chem. Phys., 2015,17:8070-8077. doi: 10.1039/C4CP05582A

    48. [48]

      Han C., Wang Y.D., Lei Y.P.. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H-2 production and degradation[J]. Nano Res., 2015,8:1199-1209. doi: 10.1007/s12274-014-0600-2

    49. [49]

      Zhou J.W., Zhang M., Zhu Y.F.. Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method[J]. Phys. Chem. Chem. Phys., 2015,17:3647-3652. doi: 10.1039/C4CP05173D

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    4. [4]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    5. [5]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    6. [6]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    11. [11]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    17. [17]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

Metrics
  • PDF Downloads(2)
  • Abstract views(1144)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return