Citation: Zhang Ben-Hou, Kong Jing-Jing, Huang Yang, Lou Yue-Guang, Li Xiao-Fei, He Chun-Yang. Benign perfluoroalkylation of uracils and uracil nucleosides via visible light-induced photoredox catalysis[J]. Chinese Chemical Letters, ;2017, 28(8): 1751-1754. doi: 10.1016/j.cclet.2017.03.039 shu

Benign perfluoroalkylation of uracils and uracil nucleosides via visible light-induced photoredox catalysis

  • Corresponding author: Li Xiao-Fei, lixiaofei@zmu.edu.cn He Chun-Yang, hechy2002@163.com
  • 1 Both authors contributed equally to this work
  • Received Date: 21 January 2017
    Revised Date: 28 February 2017
    Accepted Date: 22 March 2017
    Available Online: 9 August 2017

Figures(4)

  • In this work, an efficient and facile method for the preparation of 5-perfluoroalkylated uracils and uracil nucleosides through visible-light-mediated reaction has been developed. The reaction processes in high efficiency under mild reaction conditions and show broad substrate scope by employing commercial available perfluoroalkyl sources, thus demonstrates high potent application in life and medicinal science.
  • 加载中
    1. [1]

      Agrofoglio L.A., Gillaizeau I., Saito Y.. Palladium-assisted routes to nucleosides[J]. Chem. Rev., 2003,103:1875-1916. doi: 10.1021/cr010374q

    2. [2]

      De Clercq E., Descamps J., De Somer P.. (E)-5-(2-Bromovinyl)-2'-deoxyuridine:a potent and selective anti-herpes agent[J]. Proc. Natl. Acad. Sci. U. S. A., 1979,76:2947-2951. doi: 10.1073/pnas.76.6.2947

    3. [3]

      McGuigan C., Barucki H., Blewett S.. Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain[J]. J. Med. Chem., 2000,43:4993-4997. doi: 10.1021/jm000210m

    4. [4]

      Heidenreich J.O., Pieken W., Eckstein F.. Chemically modified RNA:approaches and applications[J]. FASEBJournal, 1993,7:90-96.

    5. [5]

      Pallan J.P.S., Greene E.M., Jicman P.A.. Unexpected origins of the enhanced pairing affinity of 2'-fluoro-modified RNA[J]. Nucleic Acids Res., 2011,39:3482-3495. doi: 10.1093/nar/gkq1270

    6. [6]

      Košutić M., Jud L., Da Veiga C.. Surprising base pairing and structural properties of 2'-trifluoromethylthio-modified ribonucleic acids[J]. J. Am. Chem. Soc., 2014,136:6656-6663. doi: 10.1021/ja5005637

    7. [7]

      R.D. Chambers, Fluorine in Organic Chemistry, 2th ed, Blackwell, London, 2004.

    8. [8]

      P. Kirsh, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.

    9. [9]

      J.T. Welch, S. Eswarakrishnan, Fluorine inbioorganic Chemistry, Wiley, New York, 1991.

    10. [10]

      Metterle L., Nelson C., Patel N.. Intralesional 5-fluorouracil (FU) as a treatment for nonmelanoma skin cancer (NMSC):A review[J]. J. Am. Acad.of Dermatol., 2015,74:552-557.

    11. [11]

      Carrillo E., Navarro S.A., Ramirez A.. 5-Fluorouracil derivatives:a patent review (2012-2014)[J]. Expert. Opin. Ther. Pat., 2015,25:1131-1144. doi: 10.1517/13543776.2015.1056736

    12. [12]

      Palasz A., Ciez D.. The driving force:digital servo drive doubles accuracy of high-speed cut-to-length machines[J]. Eur. J. Med. Chem., 2015,46:582-611.  

    13. [13]

      Lenz H.J., Stintzing S., Loupakis F.. TAS-102, a novel antitumor agent:A review of the mechanism of action[J]. Cancer Treat. Rev., 2015,41:777-783. doi: 10.1016/j.ctrv.2015.06.001

    14. [14]

      De Clercq E.. Selective anti-herpesvirus agents[J]. Antivir. Chem. Chemoth., 2013,23:93-101. doi: 10.3851/IMP2533

    15. [15]

      Caillot G., Dufour J., Belhomme M.C.. Copper-catalyzed olefinic C-H difluoroacetylation of enamides[J]. Chem. Commun., 2014,50:5887-5890. doi: 10.1039/C4CC01994F

    16. [16]

      Sladojevich F., McNeill E., Boergel J., Zheng S.L., Ritter T.. Condensed-phase, halogen-bonded CF3I and C2F5I adducts for perfluoroalkylation reactions[J]. Angew. Chem. Int. Ed., 2015,54:3712-3716. doi: 10.1002/anie.201410954

    17. [17]

      Ivanova M., Bayle A., Besset T., Poisson T., Pannecoucke X.. Copper saltcontrolled divergent reactivity of[J]. Angew. Chem. Int. Ed., 2016,55:14141-14145. doi: 10.1002/anie.v55.45

    18. [18]

      Aikawa K., Nakamura Y., Yokota Y., Toya W., Mikami K.. Stable but reactive perfluoroalkylzinc reagents:application in ligand-free copper-catalyzed perfluoroalkylation of aryl iodides[J]. Chem. Eur. J., 2015,21:96-100. doi: 10.1002/chem.201405677

    19. [19]

      Zhao Y., Zhao B., Liu J.. Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light[J]. Angew. Chem. Int. Ed, 2016,55:4215-4219. doi: 10.1002/anie.201511334

    20. [20]

      Yu H., Shi R., Zhao Y.. Smart utilization of carbon dots in semiconductor photocatalysis[J]. Adv. Mater., 2016,28:9454-9477. doi: 10.1002/adma.201602581

    21. [21]

      Zhao Y., Jia X., Waterhouse G.I.N.. Layered double hydroxide nanostructured photocatalysts for renewable energy production[J]. Adv. Energy. Mater., 2016,6. doi: 10.1002/aenm.201501974

    22. [22]

      Zhao Y., Chen G., Bian T.. Defect-rich ultrathinznal-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water[J]. Adv. Mater., 2015,27:7824-7831. doi: 10.1002/adma.201503730

    23. [23]

      Min Q.Q., Yin Z., Feng Z., Guo W.H., Zhang X.. Highly selective gemdifluoroallylation of organoborons with bromodifluoromethylated alkenes catalyzed by palladium[J]. J. Am. Chem. Soc., 2014,136:1230-1233. doi: 10.1021/ja4114825

    24. [24]

      Feng Z., Min Q.Q., Zhao H.Y., Gu J.W., Zhang X.. A general synthesis of fluoroalkylated alkenes by palladium-catalyzed heck-type reaction of fluoroalkyl bromides[J]. Angew. Chem. Int. Ed., 2015,54:1270-1274. doi: 10.1002/anie.201409617

    25. [25]

      Ge S., Chaladaj W., Hartwig J.F.. Pd-Catalyzed(-arylation of (, (-difluoroketones with aryl bromides and chlorides A route to difluoromethylarenes[J]. J. Am. Chem. Soc., 2014,136:4149-4152. doi: 10.1021/ja501117v

    26. [26]

      Guo C., Wang R.W., Qing F.L.. Palladium catalyzed direct(-arylation of (, (-difluoroketones with aryl bromides[J]. J. Fluorine Chem., 2013,44:135-142.

    27. [27]

      Feng Z., Chen F., Zhang X.. Copper catalyzed cross-coupling of iodobenzoates with bromozincdifluorophosphonate[J]. Org. Lett., 2012,14:1938-1941. doi: 10.1021/ol3006425

    28. [28]

      Chatterjee T., Iqbal N., You Y., Cho E.J.. Controlled fluoroalkylation reactions by visible-light photoredox catalysis[J]. Acc. Chem. Res., 2016,49:2284-2294. doi: 10.1021/acs.accounts.6b00248

    29. [29]

      Tang X.J., Dolbier W.R.. Efficient Cu-catalyzed atom transfer radical addition (ATRA) reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light[J]. Angew. Chem. Int. Ed., 2015,54:4246-4249. doi: 10.1002/anie.201412199

    30. [30]

      Li W., Zhu X., Mao H.. Visible-light-induced direct C(sp3)-H difluromethylation of tetrahydroisoquinolines with the in situ generated difluoroenolates[J]. Chem. Commun., 2014,50:7521-7523. doi: 10.1039/C4CC02768J

    31. [31]

      Su Y.M., Hou Y., Yin F.. VisibleLight-Mediated C-H difluoromethylation of electron-rich heteroarenes[J]. Org. Lett., 2014,16:2958-2961. doi: 10.1021/ol501094z

    32. [32]

      Lin Q., Chu L., Qing F.. Direct introduction of ethoxycarbonyldifluoromethyl-Group to heteroarenes with ethyl bromodifluoroacetate via visible-Light photocatalysis[J]. Chin. J. Chem., 2013,45:885-891.

    33. [33]

      Nguyen J.D., Tucker J.W., Konieczynska M.D., Stephenson C.R.J.. Intermolecular Atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts[J]. J. Am. Chem. Soc., 2011,133:4160-4163. doi: 10.1021/ja108560e

    34. [34]

      He C.Y., Kong J., Li X.. Visible-Light-Induced direct difluoroalkylation of uracils, pyridinones and coumarins[J]. J. Org. Chem., 2017,82:910-917. doi: 10.1021/acs.joc.6b02316

  • 加载中
    1. [1]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    2. [2]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    5. [5]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    8. [8]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    9. [9]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    10. [10]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    11. [11]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    12. [12]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    13. [13]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    16. [16]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    17. [17]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

Metrics
  • PDF Downloads(3)
  • Abstract views(553)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return