Citation: Hou Jing-Ru, Jin Di, Chen Bo, Si Lei-Lei, Jin Yue-Hua, Chen Li-Gong, Yan Xi-Long, Wang Bo-Wei, Li Yang. Two near-infrared highly sensitive cyanine fluorescent probes for pH monitoring[J]. Chinese Chemical Letters, ;2017, 28(8): 1681-1687. doi: 10.1016/j.cclet.2017.03.037 shu

Two near-infrared highly sensitive cyanine fluorescent probes for pH monitoring

  • Corresponding author: Wang Bo-Wei, bwwang@tju.edu.cn Li Yang, liyang777@tju.edu.cn
  • *Corresponding authors at: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
  • Received Date: 6 January 2017
    Revised Date: 20 February 2017
    Accepted Date: 26 March 2017
    Available Online: 30 August 2017

Figures(9)

  • Two near-infrared (NIR) pH-activated heptamethine indocyanine probes with quaternary ammonium unit were designed and synthesized. The absorption and emission titrations indicate that cationic structure improves the cyanine dye's aqueous solubility and these two probes exhibit highly sensitive response to pH in acid condition. Their fluorescence intensities both gradually increase about 25-fold from pH 7.60 to 3.00 with pKa values of 4.72 and 4.45 respectively, which are suitable for studying acidic organelles in living cells. Moreover, their fluorescence intensities are linearly proportional to pH values in the range of 5.50-4.00. These results are probably attributed to the protonation of the indole nitrogen atoms, which are verified by 1H NMR spectra. Furthermore, these two probes can achieve real-time imaging of cellular pH and detection of pH in situ in living HeLa cells due to their excellent properties, including good reversibility, desirable photostability, high selectivity, low cytotoxicity and remarkable membrane permeability.
  • 加载中
    1. [1]

      Yeh J.T., Venkatesan P., Wu S.P.. A highly selective turn-on fluorescent sensor for fluoride and its application in imaging of living cells[J]. New J. Chem., 2014,38:6198-6204. doi: 10.1039/C4NJ01486C

    2. [2]

      Lee H., Akers W., Bhushan K.. Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors[J]. Bioconjug. Chem., 2011,22:777-784. doi: 10.1021/bc100584d

    3. [3]

      Li C.Y., Kong X.F., Li Y.F.. Ratiometric and colorimetric fluorescent chemosensor for Ag+ based on tricarbocyanine[J]. Dyes Pigm., 2013,99:903-907. doi: 10.1016/j.dyepig.2013.07.032

    4. [4]

      Han Z.X., Zhu B.S., Wu T.L.. A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range[J]. Chin. Chem. Lett., 2014,25:73-76. doi: 10.1016/j.cclet.2013.10.027

    5. [5]

      Maity D., Manna A.K., Karthigeyan D.. Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates:selective detection and fluorescence imaging in living cells[J]. Chem. Eur. J., 2011,17:11152-11161. doi: 10.1002/chem.201101906

    6. [6]

      Wang C.C., Yan S.Y., Chen Y.Q.. Triphenylamine pyridine acetonitrile fluorogens with green emission for pH sensing and application in cells[J]. Chin. Chem. Lett., 2015,26:323-328. doi: 10.1016/j.cclet.2014.11.029

    7. [7]

      Shi W., Li X.H., Ma H.M.. Fluorescent probes and nanoparticles for intracellular sensing of pH values[J]. Methods Appl. Fluoresc, 2014,2042001. doi: 10.1088/2050-6120/2/4/042001

    8. [8]

      Lv H.S., Huang Sh.Y., Zhao B.X.. A new rhodamine B-based lysosomal pH fluorescent indicator[J]. Anal. Chim. Acta, 2013,788:177-182. doi: 10.1016/j.aca.2013.06.038

    9. [9]

      Cao X.J., Chen L.N., Zhang X.. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells[J]. Anal. Chim. Acta, 2016,920:86-93. doi: 10.1016/j.aca.2016.03.029

    10. [10]

      Shen S.L., Chen X.P., Zhang X.F.. A rhodamine B-based lysosomal pH probe[J]. J. Mater. Chem. B, 2015,3:919-925.  

    11. [11]

      Zhang X.F., Zhang T., Shen S.L.. A ratiometric lysosomal pH probe based on the naphthalimide-rhodamine system[J]. J. Mater. Chem. B, 2015,3:3260-3266. doi: 10.1039/C4TB02082K

    12. [12]

      Zhang X.F., Zhang T., Shen S.L.. A ratiometric lysosomal pH probe based on the coumarin-rhodamine FRET system[J]. RSC Adv., 2015,5:49115-49121. doi: 10.1039/C5RA06246B

    13. [13]

      Asanuma D., Takaoka Y., Namiki S.. Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics[J]. Angew. Chem., 2014,126:6199-6203. doi: 10.1002/ange.201402030

    14. [14]

      Han J.Y., Burgess K.. Fluorescent indicators for intracellular pH[J]. Chem. Rev., 2010,110:2709-2728. doi: 10.1021/cr900249z

    15. [15]

      Klohs J., Baeva N., Steinbrink J.. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia[J]. J. Cerebr. Blood Flow Metab., 2009,29:1284-1292. doi: 10.1038/jcbfm.2009.51

    16. [16]

      Li X.Q., Yue Y.K., Wen Y.. Hemicyanine based fluorimetric and colorimetric pH probe and its application in bioimaging[J]. Dyes Pigm., 2016,134:291-296. doi: 10.1016/j.dyepig.2016.07.033

    17. [17]

      Tang B., Yu F., Li P.. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes:imaging in living HepG2 and HL-7702 cells[J]. J. Am. Chem. Soc., 2009,131:3016-3023. doi: 10.1021/ja809149g

    18. [18]

      Su M.H., Liu Y., Ma H.M.. 1, 9-Dihydro-3-phenyl-4H-pyrazolo[3, 4-b] quinolin-4-one, a novel fluorescent probe for extreme pH measurement[J]. Chem. Commun., 2001,11:960-961.  

    19. [19]

      Wan Q.Q., Chen S.M., Shi W.. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric fluorescent probe[J]. Angew. Chem. Int. Ed., 2014,53:10916-10920. doi: 10.1002/anie.201405742

    20. [20]

      Yue Y.K., Huo F.J., Lee S.Y.. A review:the trend of progress about pH probes in cell application in recent years[J]. Analyst, 2017,142:30-41. doi: 10.1039/C6AN01942K

    21. [21]

      Yue Y.K., Huo F.J., Lee S.Y.. A dual colorimetric/fluorescence system for determining pH based on the nucleophilic addition reaction of an ohydroxymerocyanine dye[J]. Chem. Eur. J., 2016,22:1239-1243. doi: 10.1002/chem.201504395

    22. [22]

      Guo Z., Park S., Yoon J., Shin I.. Recent progress in the development of nearinfrared fluorescent probes for bioimaging applications[J]. Chem. Soc. Rev., 2014,43:16-29. doi: 10.1039/C3CS60271K

    23. [23]

      Stennett E.M., Ciuba M.A., Levitus M.. Photophysical processes in single molecule organic fluorescent probes[J]. Chem. Soc. Rev., 2014,43:1057-1075. doi: 10.1039/C3CS60211G

    24. [24]

      Shi W., Li X.H., Ma H.M.. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells[J]. Angew. Chem., 2012,124:6538-6541. doi: 10.1002/ange.201202533

    25. [25]

      Urano Y., Asanuma D., Hama Y.. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes[J]. Nat. Med., 2009,15:104-109. doi: 10.1038/nm.1854

    26. [26]

      Ma L.J., Cao W., Liu J.. A highly selective and sensitive fluorescence dualresponsive pH probe in water[J]. Sens. Actuators B, 2012,169:243-247. doi: 10.1016/j.snb.2012.04.076

    27. [27]

      Lv H.S., Liu J., Zhao J.. Highly selective and sensitive pH-responsive fluorescent probe in living Hela and HUVEC cells[J]. Sens. Actuators B, 2013,177:956-963. doi: 10.1016/j.snb.2012.12.014

    28. [28]

      Deng M., Yang C.D., Gong D.Y.. BODIPY-derived piperazidine fluorescent near-neutral pH indicator and its bioimaging[J]. Sens. Actuators B, 2016,232:492-498. doi: 10.1016/j.snb.2016.04.003

    29. [29]

      He L., Lin W., Xu Q., Wei H.. A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells[J]. ACS Appl. Mater. Interfaces, 2014,6:22326-22333. doi: 10.1021/am506322h

    30. [30]

      Sun C.L., Wang P., Li L.S.. A new near-infrared neutral pH fluorescent probe for monitoring minor pH changes and its application in imaging of HepG2 cells[J]. Appl. Biochem. Biotechnol., 2014,172:1036-1044. doi: 10.1007/s12010-013-0573-8

    31. [31]

      Li X.H., Gao X.H., Shi W.. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes[J]. Chem. Rev., 2014,114:590-659. doi: 10.1021/cr300508p

    32. [32]

      Zhao X.X., Ge D., Dai X.. A water-soluble pH fluorescence probe based on quaternary ammonium salt for bioanalytical applications[J]. Spectrochim. Acta Part A, 2015,151:218-224. doi: 10.1016/j.saa.2015.06.111

    33. [33]

      Lee M.H., Park N., Yi C.. Mitochondria-immobilized pH-sensitive off-on fluorescent probe[J]. J. Am. Chem. Soc., 2014,136:14136-14142. doi: 10.1021/ja506301n

    34. [34]

      Mo R., Sun Q., Xue J.W.. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery[J]. Adv. Mater., 2012,24:3659-3665. doi: 10.1002/adma.v24.27

    35. [35]

      Yu L., Wang Q.L., Li T.T., Chen L.G.. Preparation of a pH-sensitive polystyrene fluorescent microsphere based on a cyanine dye[J]. J. Chem. Res., 2012,36:632-634. doi: 10.3184/174751912X13466874476971

    36. [36]

      Zhao X., Li Y., Jin D.. A near-infrared multifunctional fluorescent probe with an inherent tumor-targeting property for bioimaging[J]. Chem. Commun., 2015,51:11721-11724. doi: 10.1039/C5CC03878B

    37. [37]

      Briggs M.S., Burns D.D., Cooper M.E.. A pH sensitive fluorescent cyanine dye for biological applications[J]. Chem. Commun, 2000:2323-2324.  

    38. [38]

      Darjee S.M., Bhatt K.D., Panchal U.S.. Scrupulous recognition of biologically important acids by fluorescent turn off-on" mechanism of thaicalix reduced silver nanoparticles[J]. Chin. Chem. Lett., 2017,28:312-318. doi: 10.1016/j.cclet.2016.07.026

    39. [39]

      Hong M.M., Liu A.F., Xu Y.. Synthesis and properties of three novel rhodamine-based fluorescent sensors for Hg2+[J]. Chin. Chem. Lett., 2016,27:989-992. doi: 10.1016/j.cclet.2016.03.027

    40. [40]

      Luo Q.J., Li Y.X., Zhan M.Q.. A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides[J]. Chin. Chem. Lett., 2017,28:345-349. doi: 10.1016/j.cclet.2016.10.024

    41. [41]

      Niu W.F., Nan M., Fan L.. A novel pH fluorescent probe based on indocyanine for imaging of living cells[J]. Dyes Pigm., 2016,126:224-231. doi: 10.1016/j.dyepig.2015.11.027

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    3. [3]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    4. [4]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    5. [5]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    6. [6]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    7. [7]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    8. [8]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    9. [9]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    10. [10]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    11. [11]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    14. [14]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    15. [15]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    16. [16]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    17. [17]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    18. [18]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

Metrics
  • PDF Downloads(1)
  • Abstract views(630)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return