Citation: Sheng Zhi-Zhi, Liu Xiao, Min Ling-Li, Wang Hong-Long, Liu Wei, Wang Miao, Huang Li-Zhi, Wu Fengu, Hou Xu. Bioinspired approaches for medical devices[J]. Chinese Chemical Letters, ;2017, 28(6): 1131-1134. doi: 10.1016/j.cclet.2017.03.033 shu

Bioinspired approaches for medical devices

  • Corresponding author: Hou Xu, houx@xmu.edu.cn
  • These authors contribute equally
  • Received Date: 13 February 2017
    Revised Date: 21 March 2017
    Accepted Date: 23 March 2017
    Available Online: 27 June 2017

Figures(2)

  • Advances in medical devices have revolutionized the treatment of human diseases, such as stents in occluded coronary artery, left ventricular assist devices in heart failure, pacemakers in arrhythmias, etc. Despite their significance, the development of devices for reducing and avoiding the thrombosis formation, obtaining excellent mechanical performance, and achieving stable electronic physiology remains challenging and unresolved. Fortunately, nature serves as a good resource of inspirations, and brings us endless bioinspired physicochemical ideas to better the development of novel artificial materials and devices that enable us to potentially overcome the unresolved obstacles. Bioinspired approaches, in particularly, owe much of their current development in biology, chemistry, materials science, medicine and engineering to the design and fabrication of advanced devices. The application of bioinspired devices is a burgeoning area in these fields of research. In this perspective, we would take the cardiovascular device as one example to show how these bioinspired approaches could be used to build novel, advanced biomedical devices with precisely controlled functions. Here, bioinspired approaches are utilized to solve issues like thrombogenic, mechanical and electronic physiology problems in medical devices. Moreover, there is an outlook for future challenges in the development of bioinspired medical devices.
  • 加载中
    1. [1]

      Emilie S.. Interdisciplinarity:bring biologists into biomimetics[J]. Nature, 2016,529:277-278. doi: 10.1038/529277a

    2. [2]

      Nawroth J.C., Lee H., Feinberg A.W.. A tissue-engineered jellyfish with biomimetic propulsion[J]. Nat. Biotechnol., 2012,30:792-797. doi: 10.1038/nbt.2269

    3. [3]

      Ranzani T., Gerboni G., Cianchetti M., Menciassi A.. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspir. Biomim., 2015,10:1-14.  

    4. [4]

      Trivedi D., Rahn C.D., Kier W.M., Walker I.D.. Soft robotics:biological inspiration[J]. state of the art, and future research, Appl. Bionics. Biomech., 2008,5:99-117. doi: 10.1155/2008/520417

    5. [5]

      Green J.J., Elisseeff J.H.. Mimicking biological functionality with polymers for biomedical applications[J]. Nature, 2016,540:386-394. doi: 10.1038/nature21005

    6. [6]

      Deshayes S., Gref R.. Synthetic and bioinspired cage nanoparticles for drug delivery[J]. Nanomedicine, 2014,9:1545-1564. doi: 10.2217/nnm.14.67

    7. [7]

      Lee Y., Xu C., Sebastin M.. Bioinspired nanoparticulate medical glues for minimally invasive tissue repair[J]. Adv. Healthcare Mater., 2015,4:2587-2596. doi: 10.1002/adhm.201500419

    8. [8]

      Bruinink A., Bitar M., Pleskova M.. Addition of nanoscaled bioinspired surface features:a revolution for bone related implants and scaffolds?[J]. J. Biomed. Mater. Res. Part A, 2014,102:275-294. doi: 10.1002/jbm.a.34691

    9. [9]

      Baldrighi E., Thayer N., Stevens M., Echols S.R., Priya S.. Design and implementation of the bio-inspired facial expressions for medical mannequin[J]. Int. J. Soc. Robot., 2014,6:555-574. doi: 10.1007/s12369-014-0240-4

    10. [10]

      Dunn D.A., Hodge A.J., Lipke E.A.. Biomimetic materials design for cardiac tissue regeneration[J]. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol., 2014,6:15-39. doi: 10.1002/wnan.2014.6.issue-1

    11. [11]

      Mozaffarian D., Benjamin E.J., Go A.S.. Heart disease and stroke statistics-2015 update[J]. Circulation, 2015,131:e29-e322. doi: 10.1161/CIR.0000000000000152

    12. [12]

      Leslie D.C., Waterhouse A., Berthet J.B.. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling[J]. Nat. Biotechnol., 2014,32:1134-1140. doi: 10.1038/nbt.3020

    13. [13]

      Hou X., Hu Y., Grinthal A., Khan M., Aizenberg J.. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour[J]. Nature, 2015,519:70-73. doi: 10.1038/nature14253

    14. [14]

      Hou X.. Smart gating multi-scale pore/channel-based membranes[J]. Adv. Mater., 2016,28:7049-7064. doi: 10.1002/adma.201600797

    15. [15]

      Min L., Chen S., Sheng Z.. Development and application of bio-inspired and biomimetic microfluidics[J]. Acta Phys. Sin., 2016,65:153-168.  

    16. [16]

      X. Hou, Y.S. Zhang, G.T.-d. Santiago, et al., Interplay between materials and microfluidics, Nat. Rev. Mater. (2017), doi:http://dx.doi.org/10.1038/natrevmats.2017.16.

    17. [17]

      Paven M., Papadopoulos P., Schöttler S.. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines[J]. Nat. Commun., 2013,4:1-6.  

    18. [18]

      Liu X., Sun A., Fan Y., Deng X.. Physiological significance of helical flow in the arterial system and its potential clinical applications[J]. Ann. Biomed. Eng., 2015,43:3-15. doi: 10.1007/s10439-014-1097-2

    19. [19]

      Roche E.T., Wohlfarth R., Overvelde J.T.B.. Overvelde T.B.[J]. et al. A bioinspired soft actuated material, Adv. Mater., 2014,26:1200-1206.

    20. [20]

      Pahlevan N.M., Gharib M.. A bio-inspired approach for the reduction of left ventricular workload[J]. PLOS ONE, 2014,9:1-12.  

    21. [21]

      Lang N., Pereira M.J., Lee Y.. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects[J]. Sci. Transl. Med., 2014,6:1-10.  

    22. [22]

      Liu X., Wang L., Wang Z.. Bioinspired helical graft with taper to enhance helical flow[J]. J. Biomech., 2016,49:3643-3650. doi: 10.1016/j.jbiomech.2016.09.028

    23. [23]

      Rosen M.R., Robinson R.B., Brink P.R., Cohen I.S.. The road to biological pacing[J]. Nat. Rev. Cardiol., 2011,8:656-666. doi: 10.1038/nrcardio.2011.120

    24. [24]

      Hou X., Guo W., Xia F.. A biomimetic potassium responsive nanochannel:G-quadruplex DNA conformational switching in a synthetic nanopore[J]. J. Am. Chem. Soc., 2009,131:7800-7805. doi: 10.1021/ja901574c

    25. [25]

      Zhang F., Ma J., Sun Y.. Fabrication of a mercaptoacetic acid pillar[5] arene assembled nanochannel:a biomimetic gate for mercury poisoning[J]. Chem. Sci., 2016,7:3227-3233. doi: 10.1039/C5SC04726A

    26. [26]

      Buchsbaum S.F., Nguyen G., Howorka S., Siwy Z.S.. DNA-modified polymer pores allow pH-and voltage-gated control of channel flux[J]. J. Am. Chem. Soc., 2014,136:9902-9905. doi: 10.1021/ja505302q

    27. [27]

      Liu G.F., Zhang D., Feng C.L.. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels[J]. Angew. Chem. Int. Ed., 2014,53:7789-7793. doi: 10.1002/anie.201403249

    28. [28]

      Feng C.L., Dou X., Zhang D., Schönherr H.. A highly efficient self-assembly of responsive C2-cyclohexane-derived gelators[J]. Macromol. Rapid Commun., 2012,33:1535-1541. doi: 10.1002/marc.201200274

  • 加载中
    1. [1]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    2. [2]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    3. [3]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    4. [4]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    8. [8]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    11. [11]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    12. [12]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    13. [13]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    16. [16]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    17. [17]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    18. [18]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    19. [19]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    20. [20]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

Metrics
  • PDF Downloads(2)
  • Abstract views(1137)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return