Citation: Yang Xue, Cheng Bin, Cheng Hang, Xu Liang, Wang Jian-Li. Rapid construction of the unique BCD ring system of tricyclo[6.2.1.0] undecane in the C19-diterpenoid alkaloid aconitine[J]. Chinese Chemical Letters, ;2017, 28(8): 1788-1792. doi: 10.1016/j.cclet.2017.03.032 shu

Rapid construction of the unique BCD ring system of tricyclo[6.2.1.0] undecane in the C19-diterpenoid alkaloid aconitine

  • Corresponding author: Xu Liang, liangxu@scu.edu.cn Wang Jian-Li, wangjianli0804@163.com
  • Received Date: 7 February 2017
    Revised Date: 20 March 2017
    Accepted Date: 22 March 2017
    Available Online: 24 August 2017

Figures(3)

  • A model study leading to the preparation of the unique tricyclo [6.2.1.0] undecane BCD ring systems of aconitine is described. The synthesis features an unprecedented diastereoselective oxidative dearomatization/dimerization/retro-DA/IMDA cascade reaction and a highly efficient Wagner-Meerwein rearrangement.
  • 加载中
    1. [1]

      F. P. Wang, Q. H. Chen, in: G. A. Cordell (Ed. ), In the Alkaloids: Chemistry and Biology, 69, Elsevier Science, Amsterdam, 2010, pp. 1-577.

    2. [2]

      Ameri A.. The effects of aconitum alkaloids on the central nervous system[J]. Prog. Neurobiol., 1998,56:211-235. doi: 10.1016/S0301-0082(98)00037-9

    3. [3]

      Goodall K.J., Barker D., Brimble M.A.. A review of advances in the synthesis of analogues of the delphinium-alkaloid methyllycaconitine[J]. Synlett, 2005:1809-1827.  

    4. [4]

      (a) K. Wiesner, T. Y. R. Tsai, K. Huber, et al. , Total synthesis of talatisamine, a delphinine type alkaloid, J. Am. Chem. Soc. 96(1974) 4990-4992;
      (b) K. Wiesner, T. Y. R. Tsai, K. P. Nambiar, A new stereospecific total synthesis of chasmanine and 13-desoxydelphonine, Can. J. Chem. 56(1978) 1451-1454;
      (c) K. Wiesner, Total synthesis of delphinine-type alkaloids by simple, fourth generation methods, Pure Appl. Chem. 51(1979) 689-703.

    5. [5]

      Shi Y., Wilmot J.T., Nordstrom L.U.. Total synthesis, relay synthesis, and structural confirmation of the C18-norditerpenoid alkaloid neofinaconitine[J]. J. Am. Chem. Soc., 2013,135:14313-14320. doi: 10.1021/ja4064958

    6. [6]

      Marth C.J., Gallego G.M., Lee J.C.. Network-analysis-guided synthesis of weisaconitine D and liljestrandinine[J]. Nature, 2015,528:493-498. doi: 10.1038/nature16440

    7. [7]

      Nishiyama Y., Yokoshima S., Fukuyama T.. Total synthesis of (-)-cardiopetaline[J]. Org. Lett., 2016,18:2359-2362. doi: 10.1021/acs.orglett.6b00789

    8. [8]

      (a) J. L. van der Baan, J. W. F. K. Barnick, G. van Beek, et al. , Total synthesis of C19-diterpene alkaloids: construction of a functionalized ABCD-ring system, Tetrahedron 48(1992) 2773-2784;
      (b) L. C. Baillie, J. R. Bearder, W. S. Li, et al. , Studies into the synthesis of a sub-unit of the neurotoxic alkaloid methyllycaconitine, J. Chem. Soc. Perkin Trans. 1(1998) 4047-4055;
      (c) D. F. Taber, J. L. Liang, B. Chen, et al. , A model study toward the total synthesis of N-deacetyllappaconitine, J. Org. Chem. 70(2005) 8739-8742;
      (d) G. A. Kraus, S. Kesavan, Preparation of advanced intermediates for the synthesis of both methyllycaconitine and racemulsonine via a common intermediate, Tetrahedron Lett. 46(2005) 1111-1113;
      (e) R. M. Conrad, J. Du Bois, C-H amination in synthesis: an approach to the assembly of the B/C/D ring system of aconitine, Org. Lett. 9(2007) 5465-5468;
      (f) K. Hagiwara, T. Tabuchi, D. Urabea, et al. , Expeditious synthesis of the fused hexacycle of puberuline C via a radical-based cyclization/translocation/cyclization process, Chem. Sci. 7(2016) 4372-4378;
      (g) T. Tabuchi, D. Urabe, M. Inoue, Construction of the fused pentacycle of talatisamine via a combination of radical and cationic cyclizations, J. Org. Chem. 81(2016) 10204-10213.

    9. [9]

      (a) Z. G. Liu, L. Xu, Q. H. Chen, et al. , Construction of A/E/F ring systems of C19-diterpenoid alkaloids with both C-1 and C-6 oxygen functions, Tetrahedron 68(2012) 159-165;
      (b) H. Cheng, L. Xu, D. L. Chen, et al. , Construction of functionalized B/C/D ring system of C19-diterpenoid alkaloids via intramolecular Diels-Alder reaction followed by Wagnere-Meerwein rearrangement, Tetrahedron 68(2012) 1171-1176;
      (c) Z. G. Liu, H. Cheng, M. J. Ge, et al. , PIDA-promoted intramolecular transannular aziridination to synthesize bridged azatricyclic amines related to methyllycaconitine, Tetrahedron 69(2013) 5431-5437;
      (d) R. H. Mei, Z. G. Liu, H. Cheng, et al. , Synthesis of the 10-azatricyclo[3. 3. 2. 04, 8]decan core of C20-diterpenoid alkaloid racemulsonine via iodine(Ⅲ) promoted transannular aziridination reaction, Org. Lett. 15(2013) 2206-2209;
      (e) H. Cheng, F. H. Zeng, D. Ma, et al. , Expedient construction of the ABEF azatetracyclic ring systems of lycoctonine-type and 7, 17-seco-type C19-diterpenoid alkaloids, Org. Lett. 16(2014) 2299-2301;
      (f) M. L. Jiang, Y. J. Meng, W. Y. Xiong, et al. , Construction of functionalized ABEF ring system of C20-diterpenoid alkaloid racemulosine, Tetrahedron Lett. 57(2016) 1610-1612;
      (g) Y. L. Li, M. C. Liu, Y. J. Meng, Two new entries to the ABF tricyclic ring system of 7, 17-seco-type C19-diterpenoid alkaloids via free radical cyclization and[3+2] cycloaddition of nitrile oxide, Tetrahedron 72(2016) 3171-3176.

    10. [10]

      (a)J. Marco-Contelles, B. Sánchez, Stereoelectronic effects in the 6-exo free radical cyclization of acyclic sugar derivatives: synthesis of branched chain cyclitols, J. Org. Chem. 58(1993) 4293-4297;
      (b) D. Batty, D. Crich, S. M. Fortt, Synthesis of a 1a, 25-dihydroxyvitamin D3A ring model by an acyl radical cyclization, J. Chem. Soc. Chem. Commun. (1989) 1366-1368;
      (c) J. Quirante, C. Escolano, F. Diaba, et al. , Radical promoted cyclizations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent[tris(trimethylsilyl)silane vs. tributylstannane], J. Chem. Soc. Perkin Trans. 1(1999) 1157-1162;
      (d) D. J. Wardrop, W. Zhang, N-methoxy-N-acylnitrenium ions: Application to the formal synthesis of (±)-desmethylamino FR901483, Org. Lett. 3(2001) 2353-2356.

    11. [11]

      (a) M. H. Filippini, R. Faure, J. Rodriguez, One-pot base-promoted tandem michael addition-intramolecular aldolization. Stereoselective synthesis and reactivity of 2-hydroxybicyclo[3. 2. 1]octan-8-ones, J. Org. Chem. 60(1995) 6872-6882;
      (b) H. Hagiwara, M. Fukushima, K. Kinugawa, et al. , First total syntheses of bicyclic marine sesquiterpenoids drechslerines A and B, Tetrahedron 67(2011) 4061-4068.

    12. [12]

      Petrier C., Luche J.L.. Allylzinc reagents additions in aqueous media[J]. J. Org. Chem., 1985,50:910-912. doi: 10.1021/jo00206a047

    13. [13]

      (a) Y. K. Chen, R. K. Peddinti, C. C. Liao, Diastereoselective intramolecular Diels-Alder reactions of masked o-benzoquinones: a short entry to highly functionalized tricyclic[m. 2. 2. 0] ring systems, Chem. Commun. (2001) 1340-1341;
      (b) S. K. Chittimalla, H. Y. Shiao, C. C. Liao, Domino retro Diels-Alder/Diels-Alder reaction: anefficient protocolfor the synthesis of highlyfunctionalized bicyclo[2. 2. 2]octenones and bicyclo[2. 2. 2]octadienones, Org. Biomol. Chem. 4(2006) 2267-2277;
      (c) H. Cheng, F. H. Zeng, X. Yang, et al. , Collective total syntheses of atisane-type diterpenes and atisine-type diterpenoid alkaloids: (±)-spiramilactone B, (±)-spiraminol, (±)-dihydroajaconine, and (±)-spiramines C and D, Angew. Chem. Int. Ed. 55(2016) 392-396.

  • 加载中
    1. [1]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    2. [2]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    3. [3]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    4. [4]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    5. [5]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    6. [6]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    7. [7]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    11. [11]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    14. [14]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    18. [18]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    19. [19]

      Yayue WangHaojie YangJie LiQiao KongSiming ZhouHongbao SunLili PanQiyong GongPing FengHaoxing Wu . A biocompatible Horner-Wadsworth-Emmons (HWE) reaction triggered by a bioorthogonal proximity-induced platform. Chinese Chemical Letters, 2024, 35(8): 109226-. doi: 10.1016/j.cclet.2023.109226

    20. [20]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

Metrics
  • PDF Downloads(1)
  • Abstract views(522)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return