Citation: Chen Qi, Zhang Ji-Wei, Chen Lu-Lu, Yang Jun, Yang Xin-Ling, Ling Yun, Yang Qing. Design and synthesis of chitin synthase inhibitors as potent fungicides[J]. Chinese Chemical Letters, ;2017, 28(6): 1232-1237. doi: 10.1016/j.cclet.2017.03.030 shu

Design and synthesis of chitin synthase inhibitors as potent fungicides

  • Corresponding author: Ling Yun, lyun@cau.edu.cn Yang Qing, qingyang@dlut.edu.cn
  • 1These authors contributed equally to this work
  • Received Date: 17 February 2017
    Revised Date: 19 March 2017
    Accepted Date: 21 March 2017
    Available Online: 24 June 2017

Figures(3)

  • Chitin is a structural component of fungal cell walls but is absent in vertebrates, mammals, and humans. Chitin synthase is thus an attractive molecular target for developing fungicides. Based on the structure of its donor substrate, UDP-N-acetyl-glucosamine, as well as the modelled structure of the bacterial chitin synthase NodC, we designed a novel scaffold which was then further optimized into a series of chitin synthase inhibitors. The most potent inhibitor, compound 13, exhibited high chitin synthase inhibitory activity with an IC50 value of 64.5 μmol/L. All of the inhibitors exhibited antifungal activities against the growth of agriculturally-destructive fungi, Fusarium graminearum, Botrytis cinerea, and Colletotrichum lagenarium. This work presents a new scaffold which can be used for the development of novel fungicides.
  • 加载中
    1. [1]

      Fisher M.C., Henk D.A., Briggs C.J.. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012,484:186-194. doi: 10.1038/nature10947

    2. [2]

      Zhu S., Wang W., Fang K.. Design, synthesis and antifungal activity of carbazole derivatives[J]. Chin. Chem. Lett., 2014,25:229-233. doi: 10.1016/j.cclet.2013.10.022

    3. [3]

      Kapteyn J.C., Hoyer L.L., Hecht J.E.. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants[J]. Mol. Microbiol., 2000,35:601-611.

    4. [4]

      Merzendorfer H.. Chitin synthesis inhibitors:old molecules and new developments[J]. Insect Sci., 2013,20:121-138. doi: 10.1111/j.1744-7917.2012.01535.x

    5. [5]

      Lenardon M.D., Munro C.A., Gow N.A.R.. Chitin synthesis and fungal pathogenesis[J]. Curr. Opin. Microbiol., 2010,13:416-423. doi: 10.1016/j.mib.2010.05.002

    6. [6]

      Merzendorfer H.. Insect chitin synthases:a review[J]. J. Comp. Physiol. B, 2006,1:1-15.

    7. [7]

      Lairson L.L., Henrissat B., Davies G.J.. Glycosyltransferases:structures, functions, and mechanisms[J]. Annu. Rev. Biochem., 2008,77:521-555. doi: 10.1146/annurev.biochem.76.061005.092322

    8. [8]

      Unligil U.M., Rini J.M.. Glycosyltransferase structure and mechanism[J]. Curr. Opin. Struct. Biol., 2000,10:510-517. doi: 10.1016/S0959-440X(00)00124-X

    9. [9]

      Winn M., Goss R.J.M., Kinura K., Bugg T.D.H.. Antimicrobial nucleoside antibiotics targeting cell wall assembly:recent advances in structure-function studies and nucleoside biosynthesis[J]. Nat. Prod. Rep., 2010,27:279-304. doi: 10.1039/B816215H

    10. [10]

      Morgan J.L., McNamara J.T., Fischer M.. Observing cellulose biosynthesis and membrane translocation in crystallo[J]. Nature, 2016,531:329-334. doi: 10.1038/nature16966

    11. [11]

      Dorfmueller H.C., Ferenbach A.T., Borodkin V.S., van Aalten D.M.. A structural and biochemical model of processive chitin synthesis[J]. J. Biol. Chem., 2014,289:23020-23028. doi: 10.1074/jbc.M114.563353

    12. [12]

      Hwang E.I., Kwon B.M., Lee S.H.. Obovatols, new chitin synthase 2 inhibitors of Saccharomyces cerevisiae from Magnolia obovata[J]. J. Antimicrob. Chemother., 2002,49:95-101. doi: 10.1093/jac/49.1.95

    13. [13]

      Niu C., Qu J.B., Lou H.X.. Antifungal bis[bibenzyls] from the Chinese liverwort Marchantia polymorpha L[J]. Chem. Biodivers., 2006,3:34-40. doi: 10.1002/(ISSN)1612-1880

    14. [14]

      Wu X.Z., Cheng A.X., Sun L.M., Lou H.X.. Effect of plagiochin E an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans[J]. Acta Pharmacol. Sin., 2008,29:1478-1485. doi: 10.1111/j.1745-7254.2008.00900.x

    15. [15]

      Sudoh M., Yamazaki T., Masubuchi K., Yamada-Okabe H.. Identification of a novel inhibitor specific to the fungal chitin synthase[J]. J. Biol. Chem., 2000,257:32901-32905.

    16. [16]

      Magellan H., Boccara M., Drujon T.. Discovery of two new inhibitors of botrytis cinerea chitin synthase by a chemical library screening[J]. Bioorg. Med. Chem., 2013,21:4997-5003. doi: 10.1016/j.bmc.2013.06.058

    17. [17]

      Chaudhary P.M., Tupe S.G., Deshpande M.V.. Chitin synthase inhibitors as antifungal agents[J]. Mini Rev. Med. Chem., 2013,13:222-236.

    18. [18]

      Chaudhary P.M., Chavan S.R., Shirazi F.. Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors[J]. Bioorg. Med. Chem., 2009,17:2433-2440. doi: 10.1016/j.bmc.2009.02.019

    19. [19]

      Behr J.B., Gourlain T., Helimi A., Guillerm G.. Design, synthesis and biological evaluation of hetaryl-nucleoside derivatives as inhibitors of chitin synthase[J]. Bioorg. Med. Chem. Lett., 2003,13:1713-1716. doi: 10.1016/S0960-894X(03)00239-7

    20. [20]

      Obi K., Uda J., Iwase K.. A, Novel nikkomycin analogues:inhibitors of the fungal cell wall biosynthesis enzyme chitin synthase[J]. Bioorg. Med. Chem. Lett., 2000,10:1451-1454. doi: 10.1016/S0960-894X(00)00256-0

    21. [21]

      Khare R.K., Becker J.M., Naider F.R.. Synthesis and anticandidal properties of polyoxin l analogues containing α-amino fatty acids[J]. J. Med. Chem., 1988,31:650-656. doi: 10.1021/jm00398a027

    22. [22]

      Suda A., Ohta A., Sudoh M.. Combinatorial synthesis of nikkomycin analogs on solid support[J]. Heterocycles, 2001,55:1023-1028. doi: 10.3987/COM-01-9222

    23. [23]

      Krainer E., Becker J.M., Naider F.. Synthesis and biological evaluation of dipeptidyl and tripeptidyl polyoxin and nikkomycin analogs as anticandidal prodrugs[J]. J. Med. Chem., 1991,34:174-180. doi: 10.1021/jm00105a026

    24. [24]

      Ji Q., Yang D., Wang X.. Design synthesis and evaluation of novel quinazoline-2, 4-dione derivatives as chitin synthase inhibitors and antifungal agents[J]. Bioorg. Med. Chem. Lett., 2014,22:3405-3413. doi: 10.1016/j.bmc.2014.04.042

    25. [25]

      Ji Q., Ge Z., Ge Z.. Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents[J]. Eur. J. Med. Chem., 2016,108:166-176. doi: 10.1016/j.ejmech.2015.11.027

    26. [26]

      Carcelli M., Rogolino D., Gatti A.. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes[J]. Sci. Rep., 2016,631500. doi: 10.1038/srep31500

    27. [27]

      Zhang J., Li Y., Yang X.. Synthesis and bioactivities of nucleoside compounds containing substituted benzoyl carbamate thiourea[J]. Chin. J. Org. Chem., 2013,33:305-311. doi: 10.6023/cjoc201210036

    28. [28]

      Ke S., Liu F., Wang N.. 1, 3, 4-Oxadiazoline derivatives as novel potential inhibitors targeting chitin biosynthesis:design, synthesis and biological evaluation[J]. Bioorg. Med. Chem. Lett., 2009,19:332-335. doi: 10.1016/j.bmcl.2008.11.095

    29. [29]

      Miao H., Zhang J., Yuan H.. Synthesis and fungicidal activity of nucleoside compounds containing substituted benzoyl thiourea[J]. Chin. J. Org. Chem., 2012,32:915-921. doi: 10.6023/cjoc1110111

  • 加载中
    1. [1]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    2. [2]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    3. [3]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    4. [4]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    5. [5]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    6. [6]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    7. [7]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    8. [8]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    11. [11]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    12. [12]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    13. [13]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    14. [14]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    15. [15]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    16. [16]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    17. [17]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    18. [18]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    19. [19]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    20. [20]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

Metrics
  • PDF Downloads(6)
  • Abstract views(1296)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return