Applications of covalent organic frameworks (COFs):From gas storage and separation to drug delivery
- Corresponding author: Yang Ying-Wei, ywyang@jlu.edu.cn; yywfrank@gmail.com
Citation: Wu Ming-Xue, Yang Ying-Wei. Applications of covalent organic frameworks (COFs):From gas storage and separation to drug delivery[J]. Chinese Chemical Letters, ;2017, 28(6): 1135-1143. doi: 10.1016/j.cclet.2017.03.026
Dawson R., Cooper A.I., Adams D.J.. Nanoporous organic polymer networks[J]. Prog. Polym. Sci., 2012,37:530-563. doi: 10.1016/j.progpolymsci.2011.09.002
Zou X., Ren H., Zhu G.. Topology-directed design of porous organic frameworks and their advanced applications[J]. Chem. Commun., 2013,49:3925-3936. doi: 10.1039/c3cc00039g
Guillerm V., Weselinski L.J., Alkordi M.. Porous organic polymers with anchored aldehydes:a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties[J]. Chem. Commun., 2014,50:1937-1940. doi: 10.1039/c3cc48228f
Ben T., Ren H., Ma S.. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew. Chem. Int. Ed., 2009,48:9457-9460. doi: 10.1002/anie.200904637
Ben T., Qiu S.. Porous aromatic frameworks:Synthesis[J]. structure and functions, CrystEngComm, 2013,15:17-26.
Wu M., Chen G., Liu P.. Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection[J]. Analyst, 2016,141:243-250. doi: 10.1039/C5AN01372K
Zhang J., Jin J., Cooney R.. Fluoride-mediated polycondensation for the synthesis of polymers of intrinsic microporosity[J]. Polymer, 2015,76:168-172. doi: 10.1016/j.polymer.2015.08.066
Becker D., Konnertz N., Böhning M.. Light-switchable polymers of intrinsic microporosity[J]. Chem. Mater., 2016,28:8523-8529. doi: 10.1021/acs.chemmater.6b02619
Gu C., Huang N., Gao J.. Controlled synthesis of conjugated microporous polymer films:versatile platforms for highly sensitive and label-free chemoand biosensing[J]. Angew. Chem. Int. Ed., 2014,53:4850-4855. doi: 10.1002/anie.201402141
Ratvijitvech T., Dawson R., Laybourn A.. Post-synthetic modification of conjugated microporous polymers[J]. Polymer, 2014,55:321-325. doi: 10.1016/j.polymer.2013.06.004
Gao H., Ding L., Li W.. Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide[J]. ACS Macro. Lett., 2016,5:377-381. doi: 10.1021/acsmacrolett.6b00015
Huang N., Wang P., Jiang D.. Covalent organic frameworks:a materials platform for structural and functional designs[J]. Nat. Rev. Mater., 2016,116068. doi: 10.1038/natrevmats.2016.68
Baldwin L.A., Crowe J.W., Pyles D.A.. Metalation of a mesoporous threedimensional covalent organic framework[J]. J. Am. Chem. Soc., 2016,138:15134-15137. doi: 10.1021/jacs.6b10316
Waller P.J., Gandara F., Yaghi O.M.. Chemistry of covalent organic frameworks[J]. Acc. Chem. Res., 2015,48:3053-3063. doi: 10.1021/acs.accounts.5b00369
Smith B.J., Hwang N., Chavez A.D.. Growth rates and water stability of 2D boronate ester covalent organic frameworks[J]. Chem. Commun., 2015,51:7532-7535. doi: 10.1039/C5CC00379B
Huang N., Ding X., Kim J.. A photoresponsive smart covalent organic framework[J]. Angew. Chem. Int. Ed., 2015,54:8704-8707. doi: 10.1002/anie.201503902
Chen X., Addicoat M., Jin E.. Designed synthesis of double-stage twodimensional covalent organic frameworks[J]. Sci. Rep., 2015,514650. doi: 10.1038/srep14650
Das G., Balaji Shinde D., Kandambeth S.. Mechanosynthesis of imine beta-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding[J]. Chem. Commun., 2014,50:12615-12618.
Pramudya Y., Mendoza-Cortes J.L.. Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0-700 bar at 298 K[J]. J. Am. Chem. Soc., 2016,138:15204-15213. doi: 10.1021/jacs.6b08803
Ma H., Ren H., Meng S.. A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity[J]. Chem. Commun., 2013,49:9773-9775. doi: 10.1039/c3cc45217d
Wang X., Han X., Zhang J.. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis[J]. J. Am. Chem. Soc., 2016,138:12332-12335. doi: 10.1021/jacs.6b07714
Li H., Pan Q., Ma Y.. Three-dimensional covalentorganic frameworks with dual linkages for bifunctional cascade catalysis[J]. J. Am. Chem. Soc., 2016,138:14783-14788. doi: 10.1021/jacs.6b09563
Xu H., Tao S., Jiang D.. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nat. Mater., 2016,15:722-726. doi: 10.1038/nmat4611
Crowe J.W., Baldwin L.A., McGrier P.L.. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. J. Am. Chem. Soc., 2016,138:10120-10123. doi: 10.1021/jacs.6b06546
Yang D.H., Yao Z.Q., Wu D.. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries[J]. J. Mater. Chem. A, 2016,4:18621-18627. doi: 10.1039/C6TA07606H
Guo L., Zeng X., Cao D.. Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform:functional group effects[J]. Sens. Actuators B:Chem., 2016,226:273-278. doi: 10.1016/j.snb.2015.11.108
Ding S.Y., Dong M., Wang Y.W.. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. J. Am. Chem. Soc., 2016,138:3031-3037. doi: 10.1021/jacs.5b10754
Wang P., Kang M., Sun S.. Imine-linked covalent organic framework on surface for biosensor[J]. Chin. J. Chem., 2014,32:838-843. doi: 10.1002/cjoc.201400260
Gao J., Jiang D.. Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impacts on crystalline structures[J]. Chem. Commun., 2016,52:1498-1500. doi: 10.1039/C5CC09225F
Lohse M.S., Stassin T., Naudin G.. Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption[J]. Chem. Mater., 2016,28:626-631. doi: 10.1021/acs.chemmater.5b04388
Niu X., Ding S., Wang W.. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography[J]. J. Chromatogr. A, 2016,1436:109-117. doi: 10.1016/j.chroma.2016.01.066
Plas J., Ivasenko O., Martsinovich N.. Nanopatterningof a covalentorganic framework host-guest system[J]. Chem. Commun., 2016,52:68-71. doi: 10.1039/C5CC07557B
Vyas V.S., Vishwakarma M., Moudrakovski I.. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery[J]. Adv. Mater., 2016,28:8749-8754. doi: 10.1002/adma.201603006
Bai L., Phua S.Z., Lim W.Q.. Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chem. Commun., 2016,52:4128-4131. doi: 10.1039/C6CC00853D
Feng X., Ding X., Jiang D.. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012,41:6010-6022. doi: 10.1039/c2cs35157a
Ding S.Y., Wang W.. Covalent organic frameworks (COFs):from design to applications[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F
Côte A.P., Benin A.I., Ockwig N.W.. Porous crystalline. covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411
El-Kaderi H.M., Hunt J.R., Mendoza-Cortes J.L.. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007,316:268-272. doi: 10.1126/science.1139915
Hunt J.R., Doonan C.J., LeVangie J.D.. Reticular synthesis of covalent organic borosilicate frameworks[J]. J. Am. Chem. Soc., 2008,130:11872-11873. doi: 10.1021/ja805064f
Côte A.P., El-Kaderi H.M., Furukawa H.. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. J. Am. Chem. Soc., 2007,129:12914-12915. doi: 10.1021/ja0751781
Spitler E.L., Koo B.T., Novotney J.L.. A 2D covalent organic framework with 4.7nm pores and insight into its interlayer stacking[J]. J. Am. Chem. Soc., 2011,133:19416-18421. doi: 10.1021/ja206242v
Liu C., Yu Y., Zhang W.. Room-temperature synthesis of covalent organic frameworks with a boronic ester linkage at the liquid/solid interface[J]. Chemistry, 2016,22:18412-18418. doi: 10.1002/chem.v22.51
Zhang J., Wang L., Li N.. A novel azobenzene covalent organic framework[J]. CrystEngComm, 2014,16:6547-6551. doi: 10.1039/C4CE00369A
Uribe-Romo F.J., Hunt J.R., Furukawa H.. A crystalline imine-linked 3D porous covalent organic framework[J]. J. Am. Chem. Soc., 2009,131:4570-4571. doi: 10.1021/ja8096256
Dong W.L., Li S.Y., Yue J.Y.. Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks[J]. Phys. Chem. Chem. Phys., 2016,18:17356-17359. doi: 10.1039/C6CP01804A
Zhao X., Fan Y., Wen Q.. A case study on the influence of substituents on interlayer stacking of 2D covalent organic frameworks[J]. Chemistry, 2017. doi: 10.1002/chem.201700915
Uribe-Romo F.J., Doonan C.J., Furukawa H.. Crystalline covalent organic frameworks with hydrazone linkages[J]. J. Am. Chem. Soc., 2011,133:11478-11481. doi: 10.1021/ja204728y
Stegbauer L., Schwinghammer K., Lotsch B.V.. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chem. Sci., 2014,5:2789-2793. doi: 10.1039/C4SC00016A
Kuhn P., Antonietti M., Thomas A.. Porous. covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew. Chem. Int. Ed., 2008,47:3450-3453. doi: 10.1002/(ISSN)1521-3773
Dalapati S., Jin S., Gao J.. An azine-linked covalent organic framework[J]. J. Am. Chem. Soc., 2013,135:17310-17313. doi: 10.1021/ja4103293
Li Z.J., Ding S.Y., Xue H.D.. Synthesis of -C=N linked covalent organic frameworks via the direct condensation of acetals and amines[J]. Chem. Commun., 2016,52:7217-7220. doi: 10.1039/C6CC00947F
Fang Q., Zhuang Z., Gu S.. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat. Commun., 2014,54503.
Zhang W., Jiang P., Wang Y.. Bottom-up approach to engineer two covalent porphyrinic frameworks as effective catalysts for selective oxidation[J]. Catal. Sci. Technol., 2015,5:101-104. doi: 10.1039/C4CY00969J
Nath B., Li W.H., Huang J.H.. A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I2 doping-enhanced photoconductivity[J]. CrystEngComm, 2016,18:4259-4263. doi: 10.1039/C6CE00168H
Du Y., Yang H.S., Whiteley J.M.. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew. Chem. Int. Ed., 2016,55:1737-1741. doi: 10.1002/anie.201509014
Zeng Y., Zou R., Luo Z.. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions[J]. J. Am. Chem. Soc., 2015,137:1020-1023. doi: 10.1021/ja510926w
Wang H., Ding H., Meng X.. Two-dimensional porphyrin-and phthalocyanine-based covalent organic frameworks[J]. Chin. Chem. Lett., 2016,27:1376-1382. doi: 10.1016/j.cclet.2016.05.020
Xia L., Liu Q.. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature[J]. J. Solid State Chem., 2016,244:1-5.
Wei H., Chai S., Hu N.. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chem. Commun., 2015,51:12178-12181. doi: 10.1039/C5CC04680G
Yang Z., Cao D.. Effect of Li doping on diffusion and separation of hydrogen and methane in covalent organic frameworks[J]. J. Phys. Chem. C, 2012,116:12591-12598. doi: 10.1021/jp302175d
Guo J.H., Zhang H., Liu Z.P.. Multiscale study of hydrogen adsorption diffusion[J]. and desorption on Li-doped phthalocyanine covalent organic frameworks, J. Phys. Chem. C, 2012,116:15908-15917.
Furukawa H.Y., Yaghi O.M.. Storage of hydrogen[J]. methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc., 2009,131:8875-8883.
Lu H., Wang C., Chen J.. A novel 3D covalent organic framework membrane grown on a porous alpha-Al2O3 substrate under solvothermal conditions[J]. Chem. Commun., 2015,51:15562-15565. doi: 10.1039/C5CC06742A
Shan M., Seoane B., Rozhko E.. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation[J]. Chemistry, 2016,22:14467-14470. doi: 10.1002/chem.201602999
Yin Z.J., Xu S.Q., Zhan T.G.. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chem. Commun, 2017. doi: 10.1039/c7cc01045a
Fang Q., Gu S., Zheng J.. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angew. Chem. Int. Ed., 2014,53:2878-2882. doi: 10.1002/anie.v53.11
Lin S., Diercks C.S., Zhang Y.B.. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349:1208-1213. doi: 10.1126/science.aac8343
Ding S.Y., Gao J., Wang Q.. Construction of covalentorganic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc., 2011,133:19816-19822. doi: 10.1021/ja206846p
Xu H.S., Ding S.Y., An W.K.. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. J. Am. Chem. Soc., 2016,138:11489-11492. doi: 10.1021/jacs.6b07516
Yang L., Wei D.C.. Semiconducting covalent organic frameworks:a type of twodimensional conducting polymers[J]. Chin. Chem. Lett., 2016,27:1395-1404. doi: 10.1016/j.cclet.2016.07.010
Ma L., Wang S., Feng X.. Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chin. Chem. Lett., 2016,27:1383-1394. doi: 10.1016/j.cclet.2016.06.046
Ding H., Li Y., Hu H.. A tetrathiafulvalene-based electroactive covalent organic framework[J]. Chem. Eur. J., 2014,20:14614-14618. doi: 10.1002/chem.v20.45
Wan S., Gándara F., Asano A.. Covalent organic frameworks with high charge carrier mobility[J]. Chem. Mater., 2011,23:4094-4097. doi: 10.1021/cm201140r
Wan S., Guo J., Kim J.. A belt-shaped blue luminescent[J]. and semiconducting covalent organic framework, Angew. Chem. Int. Ed., 2008,47:8826-8830.
Ding X., Guo J., Feng X.. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity[J]. Angew. Chem. Int. Ed., 2011,50:1289-1293. doi: 10.1002/anie.v50.6
Koo B.T., Berard P.G., Clancy P.. A kinetic monte carlo study of fullerene adsorptionwithin a Pc-PBBA covalent organic framework and implications for electron transport[J]. J. Chem. Theory Comput., 2015,11:1172-1180. doi: 10.1021/ct501044u
Shinde D.B., Aiyappa H.B., Bhadra M.. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. J. Mater. Chem. A, 2016,4:2682-2690. doi: 10.1039/C5TA10521H
Ma H., Liu B., Li B.. Cationic covalent organic frameworks:a simple platform of anionic exchange for porosity tuning and proton conduction[J]. J. Am. Chem. Soc., 2016,138:5897-5903. doi: 10.1021/jacs.5b13490
DeBlase C.R., Burgos K.H., Silberstein K.E.. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015,9:3173-3183.
DeBlase C.R., Silberstein K.E., Truong T.T.. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. J. Am. Chem. Soc., 2013,135:16821-16824. doi: 10.1021/ja409421d
Mulzer C.R., Shen L., Bisbey R.P.. Superior charge storage and power density of a conducting polymer-modified covalent organic framework[J]. ACS Cent. Sci., 2016,2:667-673. doi: 10.1021/acscentsci.6b00220
Liao H., Ding H., Li B.. Covalent-organic frameworks:potential host materials for sulfur impregnation in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:8854-8858. doi: 10.1039/C4TA00523F
Liao H., Wang H., Ding H.. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016,4:7416-7421. doi: 10.1039/C6TA00483K
Li Z., Zhang Y., Xia H.. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions[J]. Chem. Commun., 2016,52:6613-6616. doi: 10.1039/C6CC01476C
Lin G., Ding H., Yuan D.. A pyrene-based[J]. fluorescent three-dimensional covalent organic framework, J. Am. Chem. Soc., 2016,138:3302-3305.
Li J., Yang X., Bai C.. A novel benzimidazole-functionalized 2D COF material:synthesis and application as a selective solid-phase extractant for separation of uranium[J]. J. Colloid Interface Sci., 2015,437:211-218. doi: 10.1016/j.jcis.2014.09.046
Zhang S., Zhao X., Li B.. Stereoscopic 2D super-microporous phosphazene-based covalent organic framework:design[J]. synthesis and selective sorption towards uranium at high acidic condition, J. Hazard. Mater., 2016,314:95-104.
Zhang C., Li G., Zhang Z.. A hydrazone covalent organic polymer based microsolid phase extraction for online analysis of trace Sudan dyes in food samples[J]. J. Chromatogr. A, 2015,1419:1-9. doi: 10.1016/j.chroma.2015.09.059
Wu M., Chen G., Liu P.. Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits[J]. J. Chromatogr. A, 2016,1456:34-41. doi: 10.1016/j.chroma.2016.05.100
Wu M., Chen G., Ma J.. Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction[J]. Talanta, 2016,161:350-358. doi: 10.1016/j.talanta.2016.08.041
Yang C.X., Liu C., Cao Y.M.. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation[J]. Chem. Commun., 2015,51:12254-12257. doi: 10.1039/C5CC03413B
Fang Q., Wang J., Gu S.. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015,137:8352-8355. doi: 10.1021/jacs.5b04147
Liu C., Zhang W., Zeng Q.. A photoresponsive surface covalent organic framework:surface-confined synthesis[J]. isomerization, and controlled guest capture and release, Chemistry, 2016,22:6768-6773.
Rengaraj A., Puthiaraj P., Haldorai Y.. Porous covalent triazine polymer as a potential nanocargo for cancer therapy and imaging[J]. ACS Appl. Mater. Interface, 2016,8:8947-8955. doi: 10.1021/acsami.6b00284
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Makhloufi Zoulikha , Zhongjian Chen , Jun Wu , Wei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
Yinglan Yu , Sajid Hussain , Jianping Qi , Lei Luo , Xuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201