Flexible regulation of C3=/C2= ratio in methanol-to-hydrocarbons by delicate control of acidity of ZSM-5 catalyst
- Corresponding author: Liu Yue-Ming, ymliu@chem.ecnu.edu.cn
Citation: Zhao Shu-Fang, Yao Xu-Ting, Yan Bing-Hui, Li Li, Liu Yue-Ming, He Ming-Yuan. Flexible regulation of C3=/C2= ratio in methanol-to-hydrocarbons by delicate control of acidity of ZSM-5 catalyst[J]. Chinese Chemical Letters, ;2017, 28(6): 1318-1323. doi: 10.1016/j.cclet.2017.03.023
(a) H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas:a review, ACS Catal. 3(2013) 2130-2149;
(b) K. Cheng, B. Gu, X. Liu, et al., Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling, Angew. Chem. Int. Ed. 55(2016) 4725-4728.
(a) S. Xu, A. Zheng, Y. Wei, et al., Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites, Angew. Chem. 52(2013) 11564-11568;
(b) U. Olsbye, S. Svelle, K.P. Lillerud, et al., The formation and degradation of active species during methanol conversion over protonated zeotype catalysts, Chem. Soc. Rev. 44(2015) 7155-7176.
Tian P., Wei Y., Ye M., Liu Z.. Methanol to olefins (MTO):from fundamentals to commercialization[J]. ACS Catal., 2015,5:1922-1938. doi: 10.1021/acscatal.5b00007
(a) J. Liu, C.X. Zhang, Z.H. Shen, et al., Methanol to propylene:effect of phosphorus on a high silica HZSM-5 catalyst, Catal. Commun. 10(2009) 1506-1509;
(b) Y.J. Lee, Y.W. Kim, N. Viswanadham, K.W. Jun, J.W. Bae, Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction, Appl. Catal. A:Gen. 374(2010) 18-25;
(c) U. Olsbye, S. Svelle, M. Bjørgen, et al., Conversion of methanol to hydrocarbons:how zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51(2012) 5810-5831.
(a) S. Svelle, S. Kolboe, O. Swang, U. Olsbye, Methylation of alkenes and methylbenzenes by dimethyl ether or methanol on acidic zeolites, J. Phys. Chem. B 109(2005) 12874-12878;
(b) S. Svelle, F. Joensen, J. Nerlov, et al., Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ethene formation is mechanistically separated from the formation of higher alkenes, J. Am. Chem. Soc. 128(2006) 14770-14771;
(c) M. Bjørgen, S. Svelle, F. Joensen, et al., Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species, J. Catal. 249(2007) 195-207;
(d) V. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, et al., First principle kinetic studies of zeolite-catalyzed methylation reactions, J. Am. Chem. Soc. 133(2011) 888-899;
(e) S. Ilias, R. Khare, A. Malek, A. Bhan, A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5, J. Catal. 303(2013) 135-140.
(a) D. Mores, J. Kornatowski, U. Olsbye, B.M. Weckhuysen, Coke formation during the methanol-to-olefin conversion:in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity, Chem. Eur. J. 17(2011) 2874-2884;
(b) S.M. Almutairi, B. Mezari, E.A. Pidko, P.C. Magusin, E.J. Hensen, Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite, J. Catal. 307(2013) 194-203.
Wang C., Xu J., Qi G.. Methylbenzene hydrocarbon pool in methanol-toolefins conversion over zeolite H-ZSM-5[J]. J. Catal., 2015,332:127-137. doi: 10.1016/j.jcat.2015.10.001
(a) F. Bleken, M. Bjørgen, L. Palumbo, et al., The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology, Top. Catal. 52(2009) 218-228;
(b) M.W. Erichsen, S. Svelle, U. Olsbye, The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction, Catal. Today 215(2013) 216-223;
(c) M.W. Erichsen, S. Svelle, U. Olsbye, H-SAPO-5 as methanol-to-olefins (MTO) model catalyst:Towards elucidating the effects of acid strength, J. Catal. 298(2013) 94-101;
(d) M.W. Erichsen, K. De Wispelaere, K. Hemelsoet, et al., How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol, J. Catal. 328(2015) 186-196.
Zhao S.F., Yang D., Zhang X.W.. ZSM-5 with controllable acidity as an efficient catalyst for a highly adjustable propene/ethene ratio in the 1-butene cracking[J]. Chem. Commun., 2016,52:11191-11194. doi: 10.1039/C6CC04680K
Borghèse S., Haouas M., Sommer J., Taulelle F.. Activation energy of hydride transfer between isobutane molecules on USY zeolite. First direct experimental measurement by in situ MAS NMR using mixtures of isotopomers[J]. J. Catal., 2013,305:130-134. doi: 10.1016/j.jcat.2013.05.004
Schallmoser S., Ikuno T., Wagenhofer M.F.. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in npentane cracking[J]. J. Catal., 2014,316:93-102. doi: 10.1016/j.jcat.2014.05.004
(a) L.F. Lin, C.F. Qiu, Z.X. Zhuo, et al., Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5, J. Catal. 309(2014) 136-145;
(b) L.F. Lin, S.F. Zhao, D.W. Zhang, et al., Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5, ACS Catal. 5(2015) 4048-4059.
Guo W., Wu W., Luo M., Xiao W.. Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process[J]. Fuel Process. Technol., 2013,108:133-138. doi: 10.1016/j.fuproc.2012.06.005
Svelle S., Olsbye U., Joensen F., Bjørgen M.. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites:steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J. Phys. Chem. C, 2007,111:17981-17984. doi: 10.1021/jp077331j
Gounder R., Jones A.J., Carr R.T., Iglesia E.. Solvation and acid strength effects on catalysis by faujasite zeolites[J]. J. Catal., 2012,286:214-223. doi: 10.1016/j.jcat.2011.11.002
Huang J., Jiang Y., Marthala V.R.. Characterization and acidic properties of aluminum-exchanged zeolites X and Y[J]. J. Phys. Chem. C, 2008,112:3811-3818. doi: 10.1021/jp7103616
Arudra P., Bhuiyan T.I., Akhtar M.N.. Silicalite-1 as efficient catalyst for production of propene from 1-butene[J]. ACS Catal., 2014,4:4205-4214. doi: 10.1021/cs5009255
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Haiying Wei , Daqing Yang , Mingtao Run , Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Qinming Wu , Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232