Citation: Zhao Shu-Fang, Yao Xu-Ting, Yan Bing-Hui, Li Li, Liu Yue-Ming, He Ming-Yuan. Flexible regulation of C3=/C2= ratio in methanol-to-hydrocarbons by delicate control of acidity of ZSM-5 catalyst[J]. Chinese Chemical Letters, ;2017, 28(6): 1318-1323. doi: 10.1016/j.cclet.2017.03.023 shu

Flexible regulation of C3=/C2= ratio in methanol-to-hydrocarbons by delicate control of acidity of ZSM-5 catalyst

  • Corresponding author: Liu Yue-Ming, ymliu@chem.ecnu.edu.cn
  • Received Date: 7 March 2017
    Revised Date: 14 March 2017
    Accepted Date: 14 March 2017
    Available Online: 14 June 2017

Figures(4)

  • A very wide range of the C3=/C2= ratio from 0.72 to 7.56 with high C2=+C3= selectivity of around 66% in the methanol-to-hydrocarbons process can be realized over ZSM-5 catalyst in a fixed-bed reactor. We firstly conduct a single factor experiment of acidity, demonstrating that the acidity control of MTH catalyst is crucial to adjusting light olefins selectivity. Weak Brønsted acid sites favor to high C3= selectivity (59.0%) due to the suppression of the conversion reactions from the alkene-based to arene-based cycle, while Lewis acid sites conduce to high C2= selectivity (39.6%) due to the promotion of the conversion reactions for the aromatics formation and steric constraints of Lewis acid sites making the aromatics crack more efficiently to C2=.
  • 加载中
    1. [1]

      (a) H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas:a review, ACS Catal. 3(2013) 2130-2149;
      (b) K. Cheng, B. Gu, X. Liu, et al., Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling, Angew. Chem. Int. Ed. 55(2016) 4725-4728.

    2. [2]

      (a) S. Xu, A. Zheng, Y. Wei, et al., Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites, Angew. Chem. 52(2013) 11564-11568;
      (b) U. Olsbye, S. Svelle, K.P. Lillerud, et al., The formation and degradation of active species during methanol conversion over protonated zeotype catalysts, Chem. Soc. Rev. 44(2015) 7155-7176.

    3. [3]

      Tian P., Wei Y., Ye M., Liu Z.. Methanol to olefins (MTO):from fundamentals to commercialization[J]. ACS Catal., 2015,5:1922-1938. doi: 10.1021/acscatal.5b00007

    4. [4]

      (a) J. Liu, C.X. Zhang, Z.H. Shen, et al., Methanol to propylene:effect of phosphorus on a high silica HZSM-5 catalyst, Catal. Commun. 10(2009) 1506-1509;
      (b) Y.J. Lee, Y.W. Kim, N. Viswanadham, K.W. Jun, J.W. Bae, Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction, Appl. Catal. A:Gen. 374(2010) 18-25;
      (c) U. Olsbye, S. Svelle, M. Bjørgen, et al., Conversion of methanol to hydrocarbons:how zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51(2012) 5810-5831.

    5. [5]

      (a) S. Svelle, S. Kolboe, O. Swang, U. Olsbye, Methylation of alkenes and methylbenzenes by dimethyl ether or methanol on acidic zeolites, J. Phys. Chem. B 109(2005) 12874-12878;
      (b) S. Svelle, F. Joensen, J. Nerlov, et al., Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ethene formation is mechanistically separated from the formation of higher alkenes, J. Am. Chem. Soc. 128(2006) 14770-14771;
      (c) M. Bjørgen, S. Svelle, F. Joensen, et al., Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species, J. Catal. 249(2007) 195-207;
      (d) V. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, et al., First principle kinetic studies of zeolite-catalyzed methylation reactions, J. Am. Chem. Soc. 133(2011) 888-899;
      (e) S. Ilias, R. Khare, A. Malek, A. Bhan, A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5, J. Catal. 303(2013) 135-140.

    6. [6]

      (a) D. Mores, J. Kornatowski, U. Olsbye, B.M. Weckhuysen, Coke formation during the methanol-to-olefin conversion:in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity, Chem. Eur. J. 17(2011) 2874-2884;
      (b) S.M. Almutairi, B. Mezari, E.A. Pidko, P.C. Magusin, E.J. Hensen, Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite, J. Catal. 307(2013) 194-203.

    7. [7]

      Wang C., Xu J., Qi G.. Methylbenzene hydrocarbon pool in methanol-toolefins conversion over zeolite H-ZSM-5[J]. J. Catal., 2015,332:127-137. doi: 10.1016/j.jcat.2015.10.001

    8. [8]

      (a) F. Bleken, M. Bjørgen, L. Palumbo, et al., The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology, Top. Catal. 52(2009) 218-228;
      (b) M.W. Erichsen, S. Svelle, U. Olsbye, The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction, Catal. Today 215(2013) 216-223;
      (c) M.W. Erichsen, S. Svelle, U. Olsbye, H-SAPO-5 as methanol-to-olefins (MTO) model catalyst:Towards elucidating the effects of acid strength, J. Catal. 298(2013) 94-101;
      (d) M.W. Erichsen, K. De Wispelaere, K. Hemelsoet, et al., How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol, J. Catal. 328(2015) 186-196.

    9. [9]

      Zhao S.F., Yang D., Zhang X.W.. ZSM-5 with controllable acidity as an efficient catalyst for a highly adjustable propene/ethene ratio in the 1-butene cracking[J]. Chem. Commun., 2016,52:11191-11194. doi: 10.1039/C6CC04680K

    10. [10]

      Borghèse S., Haouas M., Sommer J., Taulelle F.. Activation energy of hydride transfer between isobutane molecules on USY zeolite. First direct experimental measurement by in situ MAS NMR using mixtures of isotopomers[J]. J. Catal., 2013,305:130-134. doi: 10.1016/j.jcat.2013.05.004

    11. [11]

      Schallmoser S., Ikuno T., Wagenhofer M.F.. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in npentane cracking[J]. J. Catal., 2014,316:93-102. doi: 10.1016/j.jcat.2014.05.004

    12. [12]

      (a) L.F. Lin, C.F. Qiu, Z.X. Zhuo, et al., Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5, J. Catal. 309(2014) 136-145;
      (b) L.F. Lin, S.F. Zhao, D.W. Zhang, et al., Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5, ACS Catal. 5(2015) 4048-4059.

    13. [13]

      Guo W., Wu W., Luo M., Xiao W.. Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process[J]. Fuel Process. Technol., 2013,108:133-138. doi: 10.1016/j.fuproc.2012.06.005

    14. [14]

      Svelle S., Olsbye U., Joensen F., Bjørgen M.. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites:steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J. Phys. Chem. C, 2007,111:17981-17984. doi: 10.1021/jp077331j

    15. [15]

      Gounder R., Jones A.J., Carr R.T., Iglesia E.. Solvation and acid strength effects on catalysis by faujasite zeolites[J]. J. Catal., 2012,286:214-223. doi: 10.1016/j.jcat.2011.11.002

    16. [16]

      Huang J., Jiang Y., Marthala V.R.. Characterization and acidic properties of aluminum-exchanged zeolites X and Y[J]. J. Phys. Chem. C, 2008,112:3811-3818. doi: 10.1021/jp7103616

    17. [17]

      Arudra P., Bhuiyan T.I., Akhtar M.N.. Silicalite-1 as efficient catalyst for production of propene from 1-butene[J]. ACS Catal., 2014,4:4205-4214. doi: 10.1021/cs5009255

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    3. [3]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    4. [4]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    9. [9]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    10. [10]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    11. [11]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    12. [12]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    13. [13]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    14. [14]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    15. [15]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    16. [16]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    17. [17]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

Metrics
  • PDF Downloads(2)
  • Abstract views(1400)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return