Citation: Zhu Kangning, Zhu Zhiyuan, Zhou Haiou, Zhang Jingyan, Liu Shiyong. Precisely installing gold nanoparticles at the core/shell interface of micellar assemblies of triblock copolymers[J]. Chinese Chemical Letters, ;2017, 28(6): 1276-1284. doi: 10.1016/j.cclet.2017.03.020 shu

Precisely installing gold nanoparticles at the core/shell interface of micellar assemblies of triblock copolymers

  • Corresponding author: Zhang Jingyan, zhangjy8@mail.ustc.edu.cn Liu Shiyong, sliu@ustc.edu.cn
  • Received Date: 8 February 2017
    Revised Date: 28 February 2017
    Accepted Date: 10 March 2017
    Available Online: 16 June 2017

Figures(8)

  • Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages, PMMA-ss-PMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors, where PMMA, PMEO3MA, PDEA, and PEO represent poly(methyl methacrylate), poly(tri(ethylene glycol) monomethyl ether methacrylate, poly(2-(diethylamino)ethyl methacrylate), and poly(ethylene oxide), respectively. Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions. The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.
  • 加载中
    1. [1]

      Daniel M.C., Astruc D.. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology catalysis, and nanotechnology[J]. Chem. Rev., 2004,104:293-346. doi: 10.1021/cr030698+

    2. [2]

      Shan J., Tenhu H.. Recent advances in polymer protected gold nanoparticles:synthesis, properties and applications[J]. Chem. Commun., 2007:4580-4598.  

    3. [3]

      Tam J.M., Tam J.O., Murthy A., Ingram D.R., Ma L.L., Travis K., Johnston K.P., Sokolov K.V.. Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications[J]. ACS Nano, 2010,4:2178-2184. doi: 10.1021/nn9015746

    4. [4]

      Huang Y.F., Xia K., He N.Y., Lu Z.X., Zhang L.M., Deng Y., Nie L.B.. Size-tunable synthesis of gold nanorods using pyrogallol as a reducing agent[J]. Sci. China Chem., 2015,58:1759-1765. doi: 10.1007/s11426-015-5437-3

    5. [5]

      Zu X.H., Jian Z.H., Yi G.B., Huang H.L., Zhong B.B., Luo H.S., Huang J.R., Wang C.. Surface-enhanced Raman scattering effect of ordered gold nanoparticle array for rhodamine B with different morphologies[J]. Chin. J. Polym. Sci., 2015,33:1470-1476. doi: 10.1007/s10118-015-1690-3

    6. [6]

      Mashhadizadeh M.H., Talemi R.P.. Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor[J]. Chin. Chem. Lett., 2015,26:160-166. doi: 10.1016/j.cclet.2014.09.004

    7. [7]

      Filali M., Meier M.A.R., Schubert U.S., Gohy J.F.. Star-block copolymers as templates for the preparation of stable gold nanoparticles[J]. Langmuir, 2005,21:7995-8000. doi: 10.1021/la050377o

    8. [8]

      Li J.B., Shi L.Q., An Y.L., Li Y., Chen X., Dong H.J.. Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles[J]. Polymer, 2006,47:8480-8487. doi: 10.1016/j.polymer.2006.09.071

    9. [9]

      Zhao F., Li L., Tian Y.C., Liu J.J., Wang J.J., Zhou Z.M., Lv C.X., Guo X.H.. Preparation of Au/Ag multilayers via layer-by-layer self-assembly in spherical polyelectrolyte brushes and their catalytic activity[J]. Chin. J. Polym. Sci., 2015,33:1421-1430. doi: 10.1007/s10118-015-1700-5

    10. [10]

      Sakai T., Alexandridis P.. Size-and shape-controlled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)-poly (propylene oxide) block copolymers in aqueous solutions at ambient conditions[J]. Nanotechnology, 2005,14:S344-S353.  

    11. [11]

      Sakai T., Alexandridis P.. Ag and au monometallic and bimetallic colloids:morphogenesis in amphiphilic block copolymer solutions[J]. Chem. Mater., 2006,18:2577-2583. doi: 10.1021/cm051757y

    12. [12]

      Chen X., Liu Y., An Y., Lu J., Li J., Xiong D., Shi L.. Novel structured composites formed from gold nanopartnocles and diblock copolymers[J]. Macromol. Rapid Commun., 2007,28:1350-1355. doi: 10.1002/(ISSN)1521-3927

    13. [13]

      Xu H.X., Xu J., Jiang X.Z., Zhu Z.Y., Rao J.Y., Yin J., Wu T., Liu H.W., Liu S.Y.. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution[J]. Chem. Mater., 2007,19:2489-2494. doi: 10.1021/cm070088g

    14. [14]

      Lee W.R., Kim M.G., Choi J.R., Park J.I., Ko S.J., Oh S.J., Cheon J.. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles[J]. J. Am. Chem. Soc., 2005,127:16090-16097. doi: 10.1021/ja053659j

    15. [15]

      Zhao W.R., Gu J.L., Zhang L.X., Chen H.R., Shi J.L.. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. J. Am. Chem. Soc., 2005,127:8916-8917. doi: 10.1021/ja051113r

    16. [16]

      Wang L.Y., Luo J., Fan Q., Suzuki M., Suzuki I.S., Engelhard M.H., Lin Y.H., Kim N., Wang J.Q., Zhong C.J.. Monodispersed core-shell Fe3O4@Au nanoparticles[J]. J. Phys. Chem. B, 2005,109:21593-21601. doi: 10.1021/jp0543429

    17. [17]

      Kobayashi H., Yamauchi M., Kitagawa H., Kubota Y., Kato K., Takata M.. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles[J]. J. Am. Chem. Soc., 2008,1301818. doi: 10.1021/ja078126k

    18. [18]

      Klaikherd A., Ghosh S., Thayumanavan S.. A facile method for the synthesis of cleavable block copolymers from ATRP-based homopolymers[J]. Macromolecules, 2007,40:8518-8520. doi: 10.1021/ma071852n

    19. [19]

      Satoh K., Lee D.H., Nagai K., Kamigaito M.. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives[J]. Macromol. Rapid Commun., 2014,35:161-167. doi: 10.1002/marc.201300638

    20. [20]

      Zhang H., Tong X., Zhao Y.. Diverse thermoresponsive behaviors of uncharged UCST block copolymer micelles in physiological medium[J]. Langmuir, 2014,30:11433-11441. doi: 10.1021/la5026334

    21. [21]

      Pham T., Jackson J.B., Halas N.J., Lee T.R.. Preparation and characterization of gold nanoshells coated with self-assembled monolayers[J]. Langmuir, 2002,18:4915-4920. doi: 10.1021/la015561y

    22. [22]

      Ge Z., Liu S.. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J]. Chem. Soc. Rev., 2013,42:7289-7325. doi: 10.1039/c3cs60048c

    23. [23]

      Liu H.H., Tang D.D., Tang R.P., Zhao Y.L.. Synthesis of multifunctional ABC stars with a reduction-labile arm by consecutive ROP, RAFT and ATRP processes[J]. Sci. China Chem., 2015,58:1724-1733. doi: 10.1007/s11426-015-5436-4

    24. [24]

      Tang W., He J., Yang Y.. A facile synthesis of cleavable block copolymers via tandem polymerizations of NMRP and ATRP[J]. J. Macromol. Sci. A, 2006,43:1553-1567. doi: 10.1080/10601320600896850

    25. [25]

      Goldbach J.T., Russell T.P., Penelle J.. Synthesis and thin film characterization of poly(styrene-block-methyl methacrylate) containing an anthracene dimer photocleavable junction point[J]. Macromolecules, 2002,35:4271-4276. doi: 10.1021/ma011940m

    26. [26]

      Lee M.H., Yang Z., Lim C.W., Lee Y.H., Dongbang S., Kang C., Kim J.S.. Disulfidecleavage-triggered chemosensors and their biological applications[J]. Chem. Rev., 2013,113:5071-5109. doi: 10.1021/cr300358b

    27. [27]

      Jiang Y., Liu G., Wang X., Hu J., Zhang G., Liu S.. Cytosol-specific fluorogenic reactions for visualizing intracellular disintegration of responsive polymeric nanocarriers and triggered drug release[J]. Macromolecules, 2015,48:764-774. doi: 10.1021/ma502389w

    28. [28]

      Hu J., Wang X., Qian Y., Yu Y., Jiang Y., Zhang G., Liu S.. Cytoplasmic reactive cationic amphiphiles for efficient intracellular delivery and self-reporting smart release[J]. Macromolecules, 2015,48:5959-5968. doi: 10.1021/acs.macromol.5b01110

    29. [29]

      Hu X., Liu G., Li Y., Wang X., Liu S.. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals[J]. J. Am. Chem. Soc., 2015,137:362-368. doi: 10.1021/ja5105848

    30. [30]

      Song J., Cheng L., Liu A., Yin J., Kuang M., Duan H.. Plasmonic vesicles of amphiphilic gold nanocrystals:self-assembly and external-stimuli-triggered destruction[J]. J. Am. Chem. Soc., 2011,133:10760-10763. doi: 10.1021/ja204387w

    31. [31]

      Hu J., Wu T., Zhang G., Liu S.. Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly[J]. J. Am. Chem. Soc., 2012,134:7624-7627. doi: 10.1021/ja302019q

    32. [32]

      Mai Y., Xiao L., Eisenberg A.. Morphological control in aggregates of amphiphilic cylindrical metal-polymer brushes[J]. Macromolecules, 2013,46:3183-3189. doi: 10.1021/ma400236g

    33. [33]

      Deng H., Zhong Y., Du M., Liu Q., Fan Z., Dai F., Zhang X.. Theranostic selfassembly structure of gold nanoparticles for NIR photothermal therapy and XRay computed tomography imaging[J]. Theranostics, 2014,4:904-918. doi: 10.7150/thno.9448

    34. [34]

      Yi S.L., Li M.C., Hu X.Q., Mo W.M., Shen Z.L.. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite[J]. Chin. Chem. Lett., 2016,27:1505-1508. doi: 10.1016/j.cclet.2016.03.016

    35. [35]

      Mai Y., Eisenberg A.. Self-assembly of block copolymers[J]. Chem. Soc. Rev., 2012,41:5969-5985. doi: 10.1039/c2cs35115c

    36. [36]

      Chu J., Lv Q.L., Guo C.L., Xu D.Z., Wang K., Liu M.Y., Huang H.Y., Zhang X.Y., Wei Y.. One-step preparation of branched PEG functionalized AIE-active luminescent polymeric nanoprobes[J]. Sci. China Chem., 2016,59:1003-1009. doi: 10.1007/s11426-016-5578-z

    37. [37]

      Wang C.Y., Yuan Q., Yang S.G., Xu J.. Effect of water content on the size and membrane thickness of polystyrene-block-poly(ethylene oxide) vesicles[J]. Chin. J. Polym. Sci., 2015,33:661-668. doi: 10.1007/s10118-015-1618-y

    38. [38]

      Chen J.C., Li J.Z., Liu J.H., Xu L.Q.. Amphiphilic poly(ethylene glycol)-b-poly (ethylene brassylate) copolymers:one-pot synthesis, self-assembly, and controlled drug release[J]. Chin. Chem. Lett., 2015,26:1319-1321. doi: 10.1016/j.cclet.2015.05.050

    39. [39]

      Wei R.B., Wang X.G., He Y.N.. Synthesis, self-assembly and photo-responsive behavior of AB(2) shaped amphiphilic azo block copolymer[J]. Chin. Chem. Lett., 2015,26:857-861. doi: 10.1016/j.cclet.2015.04.019

    40. [40]

      Ge Z., Xie D., Chen D., Jiang X., Zhang Y., Liu H., Liu S.. Stimuli-Responsive double hydrophilic block copolymer micelles with switchable catalytic activity[J]. Macromolecules, 2007,40:3538-3546. doi: 10.1021/ma070550i

    41. [41]

      Xiao J.J., Li X.B., Wang X., Yi C.W., Su S.P.. Effect of temperature-responsive solution behavior of PNIPAM-b-PPEOMA-b-PNIPAM on its inclusion complexation with alpha-cyclodextrin[J]. Chin. J. Polym. Sci., 2015,33:456-464. doi: 10.1007/s10118-015-1598-y

    42. [42]

      Huang H., Remsen E.E., Kowalewski T., Wooley K.L.. Nanocages derived from shell cross-linked micelle templates[J]. J. Am. Chem. Soc., 1999,121:3805-3806. doi: 10.1021/ja983610w

    43. [43]

      Lutz J.-F.. Polymerization of oligo(ethylene glycol) (meth)acrylates:toward newgenerations of smart biocompatible materials[J]. J. Polym. Sci. Part A:Polym. Chem., 2008,46:3459-3470. doi: 10.1002/(ISSN)1099-0518

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    6. [6]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    9. [9]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    15. [15]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    16. [16]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    17. [17]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    18. [18]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    19. [19]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    20. [20]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

Metrics
  • PDF Downloads(1)
  • Abstract views(788)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return