Citation: Ding Man-Hua, Chen Xiao-Ming, Tang Lin-Li, Zeng Fei. One-pot synthesis of well-organized heteropolyrotaxane via self-sorting strategy[J]. Chinese Chemical Letters, ;2017, 28(7): 1375-1379. doi: 10.1016/j.cclet.2017.03.009 shu

One-pot synthesis of well-organized heteropolyrotaxane via self-sorting strategy

  • Corresponding author: Zeng Fei, zengfei@iccas.ac.cn
  • Received Date: 7 January 2017
    Revised Date: 17 February 2017
    Accepted Date: 7 March 2017
    Available Online: 8 July 2017

Figures(4)

  • Two novel [3]pseudorotaxanes can be selectively synthesized from four components through self-sorting processes, which provides a new strategy for the construction of a well-organized heteropolyrotaxane.
  • 加载中
    1. [1]

      Anelli P.L., Spencer N., Stoddart J.F.. A. molecular shuttle[J]. J. Am. Chem. Soc., 1991,113:2679-2681.  

    2. [2]

      Han T., Chen C.F.. Efficient potassium-ion-templated synthesis and controlled destruction of [2] rotaxanes based on cascade complexes[J]. J. Org. Chem., 2008,73:7735-7742. doi: 10.1021/jo801522f

    3. [3]

      Meng Z., Chen C.F.. A molecular pulley based on a triply interlocked [2] rotaxane[J]. Chem. Commun., 2015,51:8241-8244. doi: 10.1039/C5CC01301A

    4. [4]

      Meng Z., Xiang J.F., Chen C.F.. Tristable [n] rotaxanes: from molecular shuttle to molecular cable car[J]. Chem. Sci., 2014,5:1520-1525. doi: 10.1039/c3sc53295j

    5. [5]

      Yang J., Ma J.F., Batten S.R.. Polyrotaxane metal-organic frameworks (PMOFs)[J]. Chem. Commun., 2012,48:7899-7912. doi: 10.1039/c2cc33060a

    6. [6]

      Harada A., Hashidzume A., Yamaguchi H.. Polymeric rotaxanes[J]. Chem. Rev., 2009,109:5974-6023. doi: 10.1021/cr9000622

    7. [7]

      Nepogodiev S.A., Stoddart J.F.. Cyclodextrin-based catenanes and rotaxanes[J]. Chem. Rev., 1998,98:1959-1976. doi: 10.1021/cr970049w

    8. [8]

      Xue M., Yang Y., Chi X.. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications[J]. Chem. Rev., 2015,115:7398-7501. doi: 10.1021/cr5005869

    9. [9]

      The Nobel Prize in Chemistry 2016-Advanced Information. Nobelprize. org. Nobel Media AB 2014. Web. October 6, 2016, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/advanced.html

    10. [10]

      Harada A., Li J., Kamachi M.. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins[J]. Nature, 1992,356:325-327. doi: 10.1038/356325a0

    11. [11]

      Harada A.. Cyclodextrin-based molecular machines[J]. Acc. Chem. Res., 2001,34:456-464. doi: 10.1021/ar000174l

    12. [12]

      Guidry E.N., Li J., Stoddart J.F.. Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers[J]. J. Am. Chem. Soc., 2007,129:8944-8945. doi: 10.1021/ja0725100

    13. [13]

      Jiang Y., Guo J.B., Chen C.F.. Bifunctionalized [3] rotaxane and its incorporation into mechanically interlocked polymer[J]. Chem. Commun., 2010,46:5536-5538. doi: 10.1039/c0cc00999g

    14. [14]

      Lee S.H., Engen P.T., Gibson H.W.. Blocking group/initiators for the synthesis of polyrotaxanes via free radical polymerizations[J]. Macromolecules, 1997,30:337-343. doi: 10.1021/ma960653t

    15. [15]

      Gong C., Ji Q., Subramaniam C.. Main chain polyrotaxanes by threading crown ethers onto a preformed polyurethane: preparation and properties[J]. Macromolecules, 1998,31:1814-1818. doi: 10.1021/ma9713116

    16. [16]

      Oku T., Furusho Y., Takata T.. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of under going reversible assembly and disassembly[J]. Angew. Chem. Int. Ed., 2004,116:984-987. doi: 10.1002/(ISSN)1521-3757

    17. [17]

      Whang D., Jeon Y.M., Heo J.. Self-assembly of a polyrotaxane containing a cyclic bead in every structural unit in the solid state: cucurbituril molecules threaded on a one-dimensional coordination polymer[J]. J. Am. Chem. Soc., 1996,118:11333-11334. doi: 10.1021/ja961551l

    18. [18]

      Park K.M., Whang D., Lee E., Heo J.. Transition metal ion directed supramolecular assembly of one-and two-dimensional polyrotaxanes incorporating cucurbituril[J]. Chem. Eur. J., 2002,8:498-508. doi: 10.1002/(ISSN)1521-3765

    19. [19]

      Mei L., Wu Q.Y., Liu C.M.. The first case of an actinide polyrotaxane incorporating cucurbituril: a unique 'dragon-like' twist induced by a specific coordination pattern of uranium[J]. Chem. Commun., 2014,50:3612-3615. doi: 10.1039/C4CC00690A

    20. [20]

      Zhang W., Dichtel W.R., Stieg A.Z.. Folding of a donor-acceptor polyrotaxane by using noncovalent bonding interactions[J]. Proc. Natl. Acad. Sci. U. S. A., 2008,105:6514-6519. doi: 10.1073/pnas.0711072105

    21. [21]

      Wu J., Leung K.C.F., Stoddart J.F.. Efficient production of [n]rotaxanes by using template-directed clipping reactions[J]. Proc. Natl. Acad. Sci. U. S. A., 2007,1041726617271.  

    22. [22]

      Zeng F., Meng Z., Han Y., Chen C.F.. Formation of a pseudosuitane-type complex between a triptycene-derived bis(crown ether) host and 10-(anthracene-9, 10-diyl)bis(N-benzylmethanaminium): a new method for the synthesis of linear polyrotaxanes[J]. Chem. Commun., 2014,50:7611-7613. doi: 10.1039/C4CC02904F

    23. [23]

      Lewis J.E.M., Winn J., Cera L.. Iterative synthesis of oligo[n]rotaxanes in excellent yield[J]. J. Am. Chem. Soc., 2016,138:16329-16336. doi: 10.1021/jacs.6b08958

    24. [24]

      Safont-Sempere M.M., Fernández G., Würthner F.. Self-sorting phenomena in complex supramolecular systems[J]. Chem. Rev., 2011,111:5784-5814. doi: 10.1021/cr100357h

    25. [25]

      Taylor P.N., Anderson H.L.. Cooperative self-assembly of double-strand conjugated porphyrin ladders[J]. J. Am. Chem. Soc., 1999,121:11538-11545. doi: 10.1021/ja992821d

    26. [26]

      Northrop B.H., Zheng Y.R., Chi K.W.. Self-organization in coordination-driven self-assembly[J]. Acc. Chem. Res., 2009,42:1554-1563. doi: 10.1021/ar900077c

    27. [27]

      Wang F., Han C., He C.. Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers[J]. J. Am. Chem. Soc., 2008,130:11254-11255. doi: 10.1021/ja8035465

    28. [28]

      Wang W., Zhang Y., Sun B.. The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach[J]. Chem. Sci., 2014,5:4554-4560. doi: 10.1039/C4SC01550A

    29. [29]

      Račkauskaitè D., Gegevičcius R., Matsuo Y.. An enantiopure hydrogen-9 bonded octameric tube: self-sorting and guest-induced rearrangement[J]. Angew. Chem. Int. Ed., 2016,55:208-212. doi: 10.1002/anie.201508362

    30. [30]

      Gan H., Gibb B.C.. Guest-controlled self-sorting in assemblies driven by the hydrophobic effect[J]. Chem. Commun., 2012,48:1656-1658. doi: 10.1039/C2CC16603H

    31. [31]

      Zeng F., Han Y., Chen C.F.. Self-sorting behavior of a four-component host-guest system and its incorporation into a linear supramolecular alternating copolymer[J]. Chem. Commun., 2015,51:3593-3595. doi: 10.1039/C5CC00035A

    32. [32]

      Isaacs L.. Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers[J]. Acc. Chem. Res., 2014,47:2052-2062. doi: 10.1021/ar500075g

    33. [33]

      Song N., Chen D.X., Xia M.C.. Supramolecular assembly-induced yellow emission of 9, 10-distyrylanthracene bridged bis(pillar [5] arene)s[J]. Chem. Commun., 2015,51:5526-5529. doi: 10.1039/C4CC08205B

    34. [34]

      Zheng B., Klautzsch F., Xue M.. Self-sorting of crown ether/secondary ammonium ion hetero-[c2]daisy chain pseudorotaxanes[J]. Org. Chem. Front., 2014,1:532-540. doi: 10.1039/C4QO00064A

    35. [35]

      Wei P., Yan X., Huang F.. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions[J]. Chem. Soc. Rev., 2015,44:815-832. doi: 10.1039/C4CS00327F

    36. [36]

      Li L., Zhang H.Y., Zhao J.. Self-sorting of four organic molecules into a heterowheel polypseudorotaxane[J]. Chem. Eur. J., 2013,19:6498-6506. doi: 10.1002/chem.201204583

    37. [37]

      Huang Z., Yang L., Liu Y.. supramolecular polymerization promoted and controlled through self-sorting[J]. Angew. Chem. Int. Ed., 2014,53:5351-5355. doi: 10.1002/anie.v53.21

    38. [38]

      Wang F., Han C., He C.. Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers[J]. J. Am. Chem. Soc., 2008,130:11254-11255. doi: 10.1021/ja8035465

    39. [39]

      Wang F., Zheng B., Zhu K.. Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two selfsorting host-guest recognition motifs[J]. Chem. Commun., 2009,45:4375-4377.  

    40. [40]

      Dong S., Yan X., Zheng B.. A supramolecular polymer blend containing two different supramolecular polymers through self-sorting organization of two heteroditopic monomers[J]. Chem. Eur. J., 2012,18:4195-4199. doi: 10.1002/chem.v18.14

    41. [41]

      Dong S., Zheng B., Zhang M.. Preparation of a diblock supramolecular copolymer via self-sorting organization[J]. Macromolecules, 2012,45:9070-9075. doi: 10.1021/ma301642y

    42. [42]

      Jiang W., Winkler H.D.F., Schalley C.A.. Integrative self-sorting: construction of a cascade-stoppered hetero [3] rotaxane[J]. J. Am. Chem. Soc., 2008,130:13852-13853. doi: 10.1021/ja806009d

    43. [43]

      Fu X., Zhang Q., Rao S.J.. One-pot synthesis of a [c2]daisy-chain-containing hetero [4] rotaxane via a self-sorting strategy[J]. Chem. Sci., 2016,7:1696-1701. doi: 10.1039/C5SC04844C

    44. [44]

      Zhang Z.J., Zhang H.Y., Wang H.. A twin-axial hetero [7] rotaxane[J]. Angew. Chem. Int. Ed., 2011,50:10834-10838. doi: 10.1002/anie.v50.46

    45. [45]

      Chang T., Heiss A.M., Cantrill S.J.. Toward interlocked molecules beyond catenanes and rotaxanes[J]. Org. Lett., 2000,2:2943-2946. doi: 10.1021/ol006187g

    46. [46]

      Zhang C., Li S., Zhang J.. Benzo-21-crown-7/secondary dialkylammonium salt [2] pseudorotaxane-and [2] rotaxane-type threaded structures[J]. Org. Lett., 2007,9:5553-5556. doi: 10.1021/ol702510c

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    3. [3]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    4. [4]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    5. [5]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    6. [6]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    7. [7]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    8. [8]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    9. [9]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    10. [10]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    11. [11]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    12. [12]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    13. [13]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    14. [14]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    15. [15]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    16. [16]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    17. [17]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    18. [18]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    19. [19]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    20. [20]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return