Citation: Lee Ru-Bin, Juan Joon-Ching, Lai Chin-Wei, Lee Kian-Mun. Ilmenite: Properties and photodegradation kinetic on Reactive Black 5 dye[J]. Chinese Chemical Letters, ;2017, 28(7): 1613-1618. doi: 10.1016/j.cclet.2017.03.006 shu

Ilmenite: Properties and photodegradation kinetic on Reactive Black 5 dye

  • Corresponding author: Juan Joon-Ching, jcjuan@um.edu.my Lai Chin-Wei, cwlai@um.edu.my
  • Received Date: 16 November 2016
    Revised Date: 18 January 2017
    Accepted Date: 6 March 2017
    Available Online: 9 July 2017

Figures(6)

  • Ilmenite is natural mineral ore made up with titanium and iron mineral; including small portion of magnesium and manganese. To the best of our knowledge, photo-degradation of Reactive Black 5 dye (RB 5) using ilmenite under solar irradiation is still lacking. In the present study, the physicochemical properties of ilmenite were characterized by using X-ray diffraction (XRD), Scanning electron microscope (SEM), BET and Raman Spectroscopy. Based on our results obtained, 73% solar-driven photo-degradation of RB 5 was successfully obtained when the catalyst loading increased up to 2.0 g/L for 20 min. In general, the photo-degradation of RB 5 by ilmenite followed first-order kinetics. The pH had a significant effect, with the most rapid degradation occurring at pH less than 7.
  • 加载中
    1. [1]

      Chong M.N., Jin B., Chow C.W.K., Saint C.. Recent developments in photocatalytic water treatment technology: a review[J]. Water Res., 2010,44:2997-3027. doi: 10.1016/j.watres.2010.02.039

    2. [2]

      Esplugas S., Giménez J., Contreras S., Pascual E., Rodrı'guez M.. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res., 2002,36:1034-1042. doi: 10.1016/S0043-1354(01)00301-3

    3. [3]

      Gaya U.I., Abdullah A.H.. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals progress and problems[J]. J. Photochem. Photobiol. C: Photochem. Rev., 2008,9:1-12. doi: 10.1016/j.jphotochemrev.2007.12.003

    4. [4]

      Reddy P.V.L., Kim K.H.. A review of photochemical approaches for the treatment of a wide range of pesticides[J]. J. Hazard. Mater., 2015,285:325-335. doi: 10.1016/j.jhazmat.2014.11.036

    5. [5]

      Grabowska E., Reszczyńska J., Zaleska A.. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review[J]. Water Res., 2012,46:5453-5471. doi: 10.1016/j.watres.2012.07.048

    6. [6]

      Crişan M., Răileanu M., Drăgan N.. Sol-gel iron-doped TiO2 nanopowders with photocatalytic activity[J]. Appl. Catal. A: Gen., 2015,504:130-142. doi: 10.1016/j.apcata.2014.10.031

    7. [7]

      Tang X., Hu K.A.. The formation of ilmenite FeTiO3 powders by a novel liquid mix and H2/H2O reduction process[J]. J. Mater. Sci., 2006,41:8025-8028. doi: 10.1007/s10853-006-0908-8

    8. [8]

      Fujii T., Oohashi H., Tochio T.. Speculations on anomalous chemical states of Ti ions in FeTiO3 observed by high-resolution X-ray Kβ emission spectra[J]. J. Electron. Spectrosc. Relat. Phenom., 2011,184:10-15. doi: 10.1016/j.elspec.2010.10.003

    9. [9]

      Zarazúa-Morín M.E., Torres-Martínez L.M., Moctezuma E., Juárez-Ramírez I., Zerme B. B.. Synthesis characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light[J]. Res. Chem. Intermed., 2016,42:1029-1043. doi: 10.1007/s11164-015-2071-9

    10. [10]

      Zhou F., Kotru S., Pandey R.K.. Nonlinear current-voltage characteristics of ilmenite-hematite ceramic[J]. Mater. Lett., 2003,57:2104-2109. doi: 10.1016/S0167-577X(02)01146-1

    11. [11]

      Adán C., Bahamonde A., Oller I., Malato S., Martínez-Arias A.. Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts[J]. Appl. Catal. B: Environ., 2014,144:269-276. doi: 10.1016/j.apcatb.2013.07.027

    12. [12]

      Wang X.P., Tang Y.X., Leiw M.Y., Lim T.T.. Solvothermal synthesis of Fe-C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water[J]. Appl. Catal. A: Gen. 409-, 2011,410:257-266.  

    13. [13]

      Vinogradov A.V., Vinogradov V.V., Agafonov A.V.. A simple preparation of highly photoactive Fe(Ⅲ)-doped titania nanocrystals by annealing-free approach[J]. J. Alloys Compd., 2013,581:675-678. doi: 10.1016/j.jallcom.2013.07.192

    14. [14]

      Ctibor P., Pala Z., Stengl V., Musalek R.. Photocatalytic activity of visible-lightactive iron-doped coatings prepared by plasma spraying[J]. Ceram. Int., 2014,40:2365-2372. doi: 10.1016/j.ceramint.2013.08.007

    15. [15]

      Kim Y.J., Gao B., Han S.Y.. Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst[J]. J. Phys. Chem. C, 2009,113:19179-19184. doi: 10.1021/jp908874k

    16. [16]

      Truong Q.D., Liu J.Y., Chung C.C., Ling Y.C.. Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst[J]. Catal. Commun., 2012,19:85-89. doi: 10.1016/j.catcom.2011.12.025

    17. [17]

      Navrotsky A.. Energetics and crystal chemical systematics among ilmenite lithium niobate, and perovskite structures[J]. Chem. Mater., 1998,10:2787-2793. doi: 10.1021/cm9801901

    18. [18]

      Liferovich R.P., Mitchell R.H.. Mn, Mg, and Zn ilmenite group titanates: a reconnaissance rietveld study[J]. Crystallogr. Rep., 2006,51:383-390. doi: 10.1134/S1063774506030047

    19. [19]

      Giaquinta D.M., zur Loye H.C.. Structural predictions in the ABO3 phase diagram[J]. Chem. Mater., 1994,6:365-372. doi: 10.1021/cm00040a007

    20. [20]

      U. S. Geological Survey, Mineral commodity summaries 2015, U. S. Department of the Interior, 2015. 

    21. [21]

      Mineral Sand Market, Market Overview, Web page of Sheffield Resources Ltd. , 2017. http://www.sheffieldresources.com.au/irm/content/mineral-sandmarket.aspx?RID=385.

    22. [22]

      Tao T., Glushenkov A.M., Liu H.W.. Ilmenite FeTiO3 nanoflowers and their pseudocapacitance[J]. J. Phys. Chem. C, 2011,115:17297-17302. doi: 10.1021/jp203345s

    23. [23]

      Moctezuma E., Zerme B., Zarazua E., Torres-Martínez L.M., García R.. Photocatalytic degradation of phenol with Fe-titania catalysts[J]. Top. Catal., 2011,54:496-503. doi: 10.1007/s11244-011-9613-1

    24. [24]

      Yan J.Q., Wu G.J., Guan N.J.. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile[J]. Phys. Chem. Chem. Phys., 2013,15:10978-10988. doi: 10.1039/c3cp50927c

    25. [25]

      Zhao W.N., Liu Z.P.. Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings[J]. Chem. Sci., 2014,5:2256-2264. doi: 10.1039/C3SC53385A

    26. [26]

      Schaub R., Thostrup P., Lopez N.. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)[J]. Phys. Rev. Lett., 2001,87266104. doi: 10.1103/PhysRevLett.87.266104

    27. [27]

      Li C., Liang B., Wang H.Y.. Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite[J]. Hydrometallurgy, 2008,91:121-129. doi: 10.1016/j.hydromet.2007.11.013

    28. [28]

      Mahmoud M.H.H., Afifi A.A.I., Ibrahim I.A.. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile[J]. Hydrometallurgy, 2004,73:99-109. doi: 10.1016/j.hydromet.2003.08.001

    29. [29]

      Pataquiva-Mateus A.Y., Zea H.R., Ramirez J.H.. Degradation of orange Ⅱ by Fenton reaction using ilmenite as catalyst[J]. Environ. Sci. Pollut. Res., 2016. doi: 10.1007/s11356-016-7263-3

    30. [30]

      Mehdilo A., Irannajad M., Rezai B.. Effect of chemical composition and crystal chemistry on the zeta potential of ilmenite[J]. Colloids Surf. A: Physicochem. Eng. Asp., 2013,428:111-119. doi: 10.1016/j.colsurfa.2013.03.032

    31. [31]

      Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M.. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile[J]. Nanotechnology, 2008,19145605. doi: 10.1088/0957-4484/19/14/145605

    32. [32]

      Ginley D.S., Butler M.A.. The photoelectrolysis of water using iron titanate anodes[J]. J. Appl. Phys., 1977,48:2019-2021. doi: 10.1063/1.323911

    33. [33]

      Zhou F., Kotru S., Pandey R.K.. Nonlinear current-voltage characteristics of ilmenite-hematite ceramic[J]. Mater. Lett., 2003,57:2104-2109. doi: 10.1016/S0167-577X(02)01146-1

    34. [34]

      de Faria D.L.A., Venâncio S., de Oliveira M.T.. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J. Raman Spectrosc., 1997,28:873-878. doi: 10.1002/(ISSN)1097-4555

    35. [35]

      Abazović N.D., Mirenghi L., Janković I.A.. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions[J]. Nanoscale Res. Lett., 2009,4518. doi: 10.1007/s11671-009-9274-1

    36. [36]

      Abazovi N.D., Čomor M.I., Dramićanin M.D.. Photoluminescence of anatase and rutile TiO2 particles[J]. J. Phys. Chem. B, 2006,110:25366-25370. doi: 10.1021/jp064454f

    37. [37]

      Abazovi N.D., Ruvarac-Bugarčić I.A., Čomor M.I.. Photon energy up-conversion in colloidal TiO2 nanorods[J]. Opt. Mater., 2008,30:1139-1144. doi: 10.1016/j.optmat.2007.05.038

    38. [38]

      Lu M.C., Chen J.N., Chang C.P.. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton's reagent[J]. Chemosphere, 1997,35:2285-2293. doi: 10.1016/S0045-6535(97)00307-X

    39. [39]

      Ratanatamskul C., Chintitanun S., Masomboon N., Lu M.C.. Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process[J]. J. Mol. Catal. A: Chem., 2010,331:101-105. doi: 10.1016/j.molcata.2010.08.007

    40. [40]

      De Laat J., Truong Le G., Legube B.. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2[J]. Chemosphere, 2004,55:715-723. doi: 10.1016/j.chemosphere.2003.11.021

    41. [41]

      Selvam K., Muruganandham M., Muthuvel I., Swaminathan M.. The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol[J]. Chem. Eng. J., 2007,128:51-57. doi: 10.1016/j.cej.2006.07.016

    42. [42]

      Riga A., Soutsas K., Ntampegliotis K., Karayannis V., Papapolymerou G.. Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes[J]. Desalination, 2007,211:72-86. doi: 10.1016/j.desal.2006.04.082

    43. [43]

      Hu C., Yu J.C., Hao Z., Wong P.K.. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Appl. Catal. B: Environ., 2003,46:35-47. doi: 10.1016/S0926-3373(03)00139-5

    44. [44]

      Akpan U.G., Hameed B.H.. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review[J]. J. Hazard. Mater., 2009,170:520-529. doi: 10.1016/j.jhazmat.2009.05.039

  • 加载中
    1. [1]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    2. [2]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    3. [3]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    4. [4]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    5. [5]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    6. [6]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    7. [7]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    8. [8]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    9. [9]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    10. [10]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    11. [11]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    12. [12]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    15. [15]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    16. [16]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    17. [17]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    18. [18]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    19. [19]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    20. [20]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

Metrics
  • PDF Downloads(1)
  • Abstract views(665)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return