Citation: Abdullah Nurul Hidayah, Shameli Kamyar, Abdullah Ezzat Chan, Abdullah Luqman Chuah. A facile and green synthetic approach toward fabrication of starch-stabilized magnetite nanoparticles[J]. Chinese Chemical Letters, ;2017, 28(7): 1590-1596. doi: 10.1016/j.cclet.2017.02.015 shu

A facile and green synthetic approach toward fabrication of starch-stabilized magnetite nanoparticles

Figures(8)

  • A facile and green synthetic approach for fabrication of starch-stabilized magnetite nanoparticles was implemented at moderate temperature. This synthesis involved the use of iron salts, potato starch, sodium hydroxide and deionized water as iron precursors, stabilizer, reducing agent and solvent respectively. The nanoparticles (NPs) were characterized by UV-vis, PXRD, HR-TEM, FESEM, EDX, VSM and FT-IR spectroscopy. The ultrasonic assisted co-precipitation technique provides well formation of highly distributed starch/Fe3O4-NPs. Based on UV-vis analysis, the sample showed the characteristic of surface plasmon resonance in the presence of Fe3O4-NPs. The PXRD pattern depicted the characteristic of the cubic lattice structure of Fe3O4-NPs. HR-TEM analysis showed the good dispersion of NPs with a mean diameter and standard deviation of 10.68±4.207 nm. The d spacing measured from the lattice images were found to be around 0.30 nm and 0.52 nm attributed to the Fe3O4 and starch, respectively. FESEM analysis confirmed the formation of spherical starch/Fe3O4-NPs with the emission of elements of C, O and Fe by EDX analysis. The magnetic properties illustrated by VSM analysis indicated that the as synthesized sample has a saturation magnetization and coercivity of 5.30 emu/g and 22.898 G respectively. Additionally, the FTIR analysis confirmed the binding of starch with Fe3O4-NPs. This method was cost effective, facile and eco-friendly alternative for preparation of NPs.
  • 加载中
    1. [1]

      De Jong W.H., Borm P.J.. Drug delivery and nanoparticles: applications and hazards[J]. Int. J. Nanomed., 2008,3:133-149.  

    2. [2]

      Gangwar J., Gupta B.K., Srivastava A.K.. Prospects of emerging engineered oxide nanomaterials and their applications[J]. Def. Sci. J., 2016,66:323-340. doi: 10.14429/dsj.66.10206

    3. [3]

      Tjong S.C., Chen H.. Nanocrystalline materials and coatings[J]. Mater. Sci. Eng. R Rep., 2004,45:1-88. doi: 10.1016/j.mser.2004.07.001

    4. [4]

      Challa S.R., Delariva A.T., Hansen T.W.. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening[J]. J. Am. Chem. Soc., 2011,133:20672-20675. doi: 10.1021/ja208324n

    5. [5]

      Mateo-Mateo C., Vázquez-Vázquez C, Pérez-Lorenzo M., Lorenzo -, Salgueiriño V., Correa-Duarte M.A.. Ostwald ripening of platinum nanoparticles confined in a carbon nanotube/silica-templated cylindrical space[J]. J. Nanomater., 2012,201215.  

    6. [6]

      Elsupikhe R.F., Shameli K., Ahmad M.B., Ibrahim N.A., Zainudin N.. Green sonochemical synthesis of silver nanoparticles at varying concentrations of k-carrageenan[J]. Nanoscale Res. Lett., 2015,10302. doi: 10.1186/s11671-015-0916-1

    7. [7]

      Shameli K., Bin Ahmad M., Jazayeri S.D.. Investigation of antibacterial properties silver nanoparticles prepared via green method[J]. Chem. Cent. J., 2012,673.  

    8. [8]

      Shameli K., Bin Ahmad M., Zamanian A.. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder[J]. Int. J. Nanomed., 2012,7:5603-5610.  

    9. [9]

      Shameli K., Bin Ahmad M., Jazayeri S.D.. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method[J]. Int. J. Mol. Sci., 2012,13:6639-6650. doi: 10.3390/ijms13066639

    10. [10]

      Kumar S., Lather V., Pandita D.. Green synthesis of therapeutic nanoparticles: an expanding horizon[J]. Nanomedicine, 2015,10:2451-2471. doi: 10.2217/nnm.15.112

    11. [11]

      Mohajan H.. Green marketing is a sustainable marketing system in the twenty first century[J]. Int. J. Manage. Transform., 2012,6:23-39.  

    12. [12]

      Wu W., He Q.G., Jiang C.Z.. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies[J]. Nanoscale Res. Lett., 2008,3:397-415. doi: 10.1007/s11671-008-9174-9

    13. [13]

      Kaushik A., Khan R., Solanki P.R.. Iron oxide nanoparticles-chitosan composite based glucose biosensor[J]. Biosens. Bioelectron., 2008,24:676-683. doi: 10.1016/j.bios.2008.06.032

    14. [14]

      Khalkhali M., Sadighian S., Rostamizadeh K.. Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy[J]. Bioimpacts, 2015,5:141-150. doi: 10.15171/bi.2015.19

    15. [15]

      Cao M., Li Z.H., Wang J.L.. Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis[J]. Trends Food Sci. Technol., 2012,27:47-56. doi: 10.1016/j.tifs.2012.04.003

    16. [16]

      Chen D.Z., Tang Q.S., Li X.D.. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells[J]. Int. J. Nanomed., 2012,7:4973-4982.  

    17. [17]

      Lu W.S., Shen Y.H., Xie A.J., Zhang W.Q.. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles[J]. J. Magn. Magn. Mater., 2010,322:1828-1833. doi: 10.1016/j.jmmm.2009.12.035

    18. [18]

      Chin S.F., Pang S.C., Tan C.H.. Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape[J]. J. Mater. Environ. Sci., 2011,2:299-302.  

    19. [19]

      Hua C.C., Zakaria S., Farahiyan R.. Size-controlled synthesis and characterization of Fe3O4 nanoparticles by chemical coprecipitation method[J]. Sains Malaysia, 2008,37:389-394.  

    20. [20]

      Wang X.S., Huang H., Li G.Q.. Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants[J]. Nanoscale Res. Lett., 2014,9648. doi: 10.1186/1556-276X-9-648

    21. [21]

      Hong R.Y., Pan T.T., Li H.Z.. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids[J]. J. Magn. Magn. Mater., 2006,303:60-68. doi: 10.1016/j.jmmm.2005.10.230

    22. [22]

      Yan A.G., Liu X.H., Qiu G.Z.. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles[J]. J.Alloys Compd., 2008,458:487-491. doi: 10.1016/j.jallcom.2007.04.019

    23. [23]

      Koutzarova T., Kolev S., Ghelev C., Paneva D., Nedkov I.. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique[J]. Phys. Status Solidi C, 2006,3:1302-1307. doi: 10.1002/(ISSN)1610-1642

    24. [24]

      Wu S., Sun A.Z., Zhai F.Q.. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation[J]. Mater. Lett., 2011,65:1882-1884. doi: 10.1016/j.matlet.2011.03.065

    25. [25]

      Vattikuti S.V.P., Byon C., Reddy C.V., Shim J., Venkatesh B.. Co-precipitation synthesis and characterization of faceted MoS2 nanorods with controllable morphologies[J]. Appl. Phys. A Mater., 2015,119:813-823. doi: 10.1007/s00339-015-9163-7

    26. [26]

      Laurent S., Forge D., Port M.. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem. Rev., 2008,108:2064-2110. doi: 10.1021/cr068445e

    27. [27]

      Lodhia J., Mandarano G., Ferris N.J., Eu P., Cowell S.F.. Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI[J]. Biomed. Imaging Interv. J., 2010,6e12.  

    28. [28]

      Liu W.W., Aziz A., Chai S.P., Mohamed A.R., Tye C.T.. Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes[J]. New Carbon Mater., 2011,26:255-261. doi: 10.1016/S1872-5805(11)60080-2

    29. [29]

      Qiu G.H., Wang Q., Wang C., Lau W., Guo Y.L.. Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization[J]. Ultrason. Sonochem., 2007,14:55-61. doi: 10.1016/j.ultsonch.2006.03.001

    30. [30]

      Zhu S.M., Guo J.J., Dong J.P.. Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors[J]. Ultrason. Sonochem., 2013,20:872-880. doi: 10.1016/j.ultsonch.2012.12.001

    31. [31]

      Chandrapala J.. Low intensity ultrasound applications on food systems[J]. Int. Food Res. J., 2015,22:888-895.  

    32. [32]

      M. Ashokkumar, T. J. Mason, Sonochemistry, in: S. M. Ashokkumar, T. J. Mason (Eds. ), Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2007.

    33. [33]

      Jia X., Chen D.R., Jiao X.L., Zhai S.M.. Environmentally-friendly preparation of water-dispersible magnetite nanoparticles[J]. Chem. Commun., 2009:968-970.  

    34. [34]

      Sun Z.K., Zhou X.R., Luo W.. Interfacial engineering of magnetic particles with porous shells: towards magnetic core?porous shell microparticles[J]. Nano Today, 2016,11:464-482. doi: 10.1016/j.nantod.2016.07.003

    35. [35]

      Liu J., Sun Z.K., Deng Y.H.. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups[J]. Angew. Chem. Int. Ed., 2009,48:5875-5879. doi: 10.1002/anie.v48:32

    36. [36]

      Hui C., Shen C.M., Tian J.F.. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds[J]. Nanoscale, 2011,3:701-705. doi: 10.1039/C0NR00497A

    37. [37]

      Yue Q., Li J.L., Luo W.. An interface coassembly in biliquid phase: toward core-shell magnetic mesoporous silica microspheres with tunable pore size[J]. J. Am. Chem. Soc., 2015,137:13282-13289. doi: 10.1021/jacs.5b05619

    38. [38]

      Deng Y.H., Deng C.H., Qi D.W.. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin[J]. Adv. Mater., 2009,21:1377-1382. doi: 10.1002/adma.v21:13

    39. [39]

      Khalkhali M., Rostamizadeh K., Sadighian S.. The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study[J]. DARU, 2015,2345. doi: 10.1186/s40199-015-0124-7

    40. [40]

      Hong R.Y., Li J.H., Qu J.M., Chen L.L., Li H.Z.. Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid[J]. Chem. Eng. J., 2009,150:572-580. doi: 10.1016/j.cej.2009.03.034

    41. [41]

      Unterweger H., Tietze R., Janko C.. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery[J]. Int. J. Nanomed., 2014,9:3659-3676.  

    42. [42]

      Sun C., Du K., Fang C.. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo[J]. ACS Nano, 2010,4:2402-2410. doi: 10.1021/nn100190v

    43. [43]

      Mukhopadhyay A., Joshi N., Chattopadhyay K., De G.. A facile synthesis of PEGcoated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C[J]. ACS Appl. Mater. Interfaces, 2012,4:142-149. doi: 10.1021/am201166m

    44. [44]

      Chastellain M., Petri A., Hofmann H.. Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles[J]. J. Colloid Interface Sci., 2004,278:353-360. doi: 10.1016/j.jcis.2004.06.025

    45. [45]

      Bajpai A.K., Gupta R.. Synthesis and characterization of magnetite (Fe3O4)— polyvinyl alcohol-based nanocomposites and study of superparamagnetism[J]. Polym. Compos., 2010,31:246-255.  

    46. [46]

      Morales M.A., Finotelli P.V., Coaquira J.A.H.. In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium-alginate matrix for biomedical applications[J]. Mater. Sci. Eng. C, 2008,28:253-257. doi: 10.1016/j.msec.2006.12.016

    47. [47]

      Luna-Pineda T., Ortiz-Rivera M., Perales-Pérez O., Román-Velázquez F.. Synthesis and characterization of alginate-based magnetic nanocomposite[J]. NSTI-Nanotechnol., 2009,2:495-498.  

    48. [48]

      Arum Y., Oh Y.O., Kang H.W., Ahn S.H., Oh J.. Chitosan-coated Fe3O4 magnetic nanoparticles as carrier of cisplatin for drug delivery[J]. Fish. Aquat. Sci., 2015,18:89-98.  

    49. [49]

      Kim D.K., Mikhaylova M., Wang F.H.. Starch-coated superparamagnetic nanoparticles as MR contrast agents[J]. Chem. Mater., 2003,15:4343-4351. doi: 10.1021/cm031104m

    50. [50]

      Abdul-Raheim A.R.M., El-Saeed S.M., Farag R.K., Abdel-Raouf M.E.. Low cost biosorbents based on modified starch iron oxide nanocomposites for selective removal of some heavy metals from aqueous solutions[J]. Adv. Mater. Lett., 2016,7:402-409. doi: 10.5185/amlett

    51. [51]

      Lu D.R., Xiao C.M., Xu S.J.. Starch-based completely biodegradable polymer materials[J]. Express Polym. Lett., 2009,3:366-375. doi: 10.3144/expresspolymlett.2009.46

    52. [52]

      Aouada F.A., Mattoso L.H.C., Longo E.. Enhanced bulk and superficial hydrophobicities of starch-based bionanocomposites by addition of clay[J]. Ind. Crops Prod., 2013,50:449-455. doi: 10.1016/j.indcrop.2013.07.058

    53. [53]

      Buléon A., Colonna P., Planchot V., Ball S.. Starch granules: structure and biosynthesis[J]. Int. J. Biol. Macromol., 1998,23:85-112. doi: 10.1016/S0141-8130(98)00040-3

    54. [54]

      Rahman O.U., Mohapatra S.C., Ahmad S.. Fe3O4 inverse spinal super paramagnetic nanoparticles[J]. Mater. Chem. Phys., 2012,132:196-202. doi: 10.1016/j.matchemphys.2011.11.032

    55. [55]

      Yuvakkumar R., Hong S.I.. Green synthesis of spinel magnetite iron oxide nanoparticles[J]. Adv. Mater. Res., 2014,1051:39-42. doi: 10.4028/www.scientific.net/AMR.1051

    56. [56]

      Koesnarpadi S., Santosa S.J., Siswanta D., Rusdiarso B.. Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/HA)[J]. Procedia Environ. Sci., 2015,30:103-108. doi: 10.1016/j.proenv.2015.10.018

    57. [57]

      Yang X.Y., Zhang X.Y., Ma Y.F.. Superparamagnetic graphene oxide? Fe3O4nanoparticles hybrid for controlled targeted drug carriers[J]. J. Mater. Chem., 2009,19:2710-2714. doi: 10.1039/b821416f

    58. [58]

      Saikia C., Hussain A., Ramteke A., Sharma H.K., Maji T.K.. Crosslinked thiolated starch coated Fe3O4 magnetic nanoparticles: effect of montmorillonite and crosslinkingdensityondrugdeliveryproperties[J]. Starch/Stärke, 2014,66:760-771. doi: 10.1002/star.201300277

    59. [59]

      Palanikumar S., Meenarathi B., Kannammal L., Anbarasan R.. Synthesis, characterization and catalytic activity of furosemide-functionalized ferrite on the sedimentation behavior of starch[J]. Appl. Nanosci., 2015,5:83-91. doi: 10.1007/s13204-014-0294-5

    60. [60]

      Synytsya A., Novak M.. Structural analysis of glucans[J]. Ann. Transl. Med., 2014,217.  

    61. [61]

      Cael J.J., Koenig J.L., Blackwell J.. Infrared and Raman spectroscopy of carbohydrates. Part Ⅵ: normal coordinate analysis of V-amylose[J]. Biopolymers, 1975,14:1885-1903. doi: 10.1002/(ISSN)1097-0282

    62. [62]

      Simi C.K., Emilia Abraham T.. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery[J]. Bioprocess Biosyst. Eng., 2007,30:173-180. doi: 10.1007/s00449-007-0112-5

    63. [63]

      Chen F.H., Gao Q., Ni J.Z.. The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core? shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery[J]. Nanotechnology, 2008,19165103. doi: 10.1088/0957-4484/19/16/165103

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    4. [4]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    5. [5]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    6. [6]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    7. [7]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    10. [10]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    11. [11]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    12. [12]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    13. [13]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    14. [14]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    17. [17]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    18. [18]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    19. [19]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(2)
  • Abstract views(702)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return