Citation: Zhang Yong, Zhu Jia-Yi, Ren Hong-Bo, Bi Yu-Tie, Zhang Lin. Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance[J]. Chinese Chemical Letters, ;2017, 28(5): 935-942. doi: 10.1016/j.cclet.2017.01.023 shu

Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance

  • Corresponding author: Zhu Jia-Yi, zhuyu416my@sina.com Zhang Lin, zhlmy@sina.com
  • Received Date: 2 December 2016
    Revised Date: 2 January 2017
    Accepted Date: 18 January 2017
    Available Online: 22 May 2017

Figures(8)

  • Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan via a self-assembly process by a rapid method. The morphology and structure of the as-prepared aerogels were characterized. The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores. The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best. When working as a supercapacitor electrode, NGA-900 exhibited a high specific capacitance (244.4 F/g at a current density of 0.2 A/g), superior rate capability (51.0% capacity retention) and excellent cycling life (96.2% capacitance retained after 5000 cycles).
  • 加载中
    1. [1]

      Simon P., Gogotsi Y.. Materials for electrochemical capacitors[J]. Nat. Mater., 2008(7):845-854.  

    2. [2]

      Lu X.J., Dou H., Zhang X.G.. Mesoporous carbon nanospheres inserting into graphene sheets for flexible supercapacitor film electrode[J]. Mater. Lett., 2016(178):304-307.  

    3. [3]

      Xu Y.X., Shi G.Q.. Assembly of chemically modified graphene:methods and applications[J]. J. Mater. Chem., 2011(21):3311-3323.  

    4. [4]

      Wu X.L., Xu A.W.. Carbonaceous hydrogels and aerogels for supercapacitors[J]. J. Mater. Chem. A, 2014(2):4852-4864.  

    5. [5]

      Zhang X., Zhang H.T., Li C.. Recent advances in porous graphene materials for supercapacitor applications[J]. RSC Adv., 2014(4):45862-45884.  

    6. [6]

      Luo B., Zhi L.J.. Design and construction of three dimensional graphene-based composites for lithium ion battery applications[J]. Energy Environ. Sci., 2015(8):456-477.  

    7. [7]

      Nardecchia S., Carriazo D., Ferrer M.L., Gutierrez M.C., del Monte F.. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:synthesis and applications[J]. Chem. Soc. Rev., 2013(42):794-830.  

    8. [8]

      Mao S., Lu G.H., Chen J.H.. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015(7):6924-6943.  

    9. [9]

      Luan V.H., Tien H.N., Hoa L.T.. Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor[J]. J. Mater. Chem. A, 2013(1):208-211.  

    10. [10]

      Feng H.B., Li Y.M., Li J.H.. Strong reduced graphene oxide-polymer composites:hydrogels and wires[J]. RSC Adv., 2012(2):6988-6993.  

    11. [11]

      Zhao Y., Liu J., Hu Y.. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Adv. Mater., 2013(25):591-595.  

    12. [12]

      Song X.H., Lin L.P., Rong M.C.. multifunctional 3D nitrogen-doped graphene aerogel[J]. Carbon, 2014(80):174-182.  

    13. [13]

      Gao H.C., Sun Y.M., Zhou J.J., Xu R., Duan H.W.. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification[J]. ACS Appl. Mater. Interfaces, 2013(5):425-432.  

    14. [14]

      Bai H., Sheng K.X., Zhang P.F., Li C., Shi G.Q.. Graphene oxide/conducting polymer composite hydrogels[J]. J. Mater. Chem., 2011(21):18653-18658.  

    15. [15]

      Xing L.B., Hou S.F., Zhang J.L.. S co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor[J]. Mater. Lett., 2015(147):97-100.

    16. [16]

      Liu Y., Wang H.H., Zhou J.. Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode[J]. Electrochim. Acta, 2013(112):44-52.  

    17. [17]

      Sun X.X., Cheng P., Wang H.J.. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance[J]. Carbon, 2015(92):1-10.  

    18. [18]

      Shi X.P., Zhu J.Y., Zhang Y.. Ndoped graphene aerogels and their application in supercapacitors[J]. RSC Adv., 2015(5):77130-77137.  

    19. [19]

      Xing L.B., Hou S.F., Zhou J.. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption[J]. J. Solid State Chem., 2015(230):224-232.  

    20. [20]

      Guo H.L., Su P., Kang X.F., Ning S.K.. Synthesis and characterization of nitrogendoped graphene hydrogels by hydrothermal route with urea as reducingdoping agents[J]. J. Mater. Chem. A, 2013(1):2248-2255.  

    21. [21]

      Wang T., Wang L.X., Wu D.L.. Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents[J]. J. Mater. Chem. A, 2014(2):8352-8361.  

    22. [22]

      Tang G.Q., Jiang Z.G., Li X.F.. Three dimensional graphene aerogels and their electrically conductive composites[J]. Carbon, 2014(77):592-599.  

    23. [23]

      Ngah W.S.W., Ghani S.A., Kamari A.. Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads[J]. Bioresour. Technol., 2005(96):443-450.  

    24. [24]

      Klemm D., Heublein B., Fink H.P., Bohn A.. Cellulose:fascinating biopolymer and sustainable raw material[J]. Angew. Chem. Int. Ed., 2005(44):3358-3393.  

    25. [25]

      Hao P., Zhao Z.H., Leng Y.H.. Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors[J]. Nano Energy, 2015(15):9-23.  

    26. [26]

      Geng Z.R., Wang H., Wang R.T.. Facile synthesis of hierarchical porous carbon for supercapacitor with enhanced electrochemical performance[J]. Mater. Lett., 2016(182):1-5.  

    27. [27]

      Xu F., Minniti M., Barone P.. Nitrogen doping of single walled carbon nanotubes by low energy N2+ ion implantation[J]. Carbon, 2008(46):1489-1496.  

    28. [28]

      Zhou M., Pu F., Wang Z., Guan S.Y.. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors[J]. Carbon, 2014(68):185-194.  

    29. [29]

      Ren H.B., Shi X.P., Zhu J.Y.. Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption[J]. J. Mater. Sci., 2016(51):6419-6427.  

    30. [30]

      Wang Y.T., Lu A.H., Zhang H.L., Li W.C.. Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors[J]. J. Phys. Chem.C, 2011(115):5413-5421.  

    31. [31]

      Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E.. Effect of pore size distribution of coal-based activated carbons on double layer capacitance[J]. Electrochim. Acta, 2005(50):1197-1206.  

    32. [32]

      Yoon S., Lee J., Hyeon T., Oh S.M.. Electric double-layer capacitor performance of a new mesoporous carbon[J]. J. Electrochem. Soc., 2000(147):2507-2512.  

    33. [33]

      Stoller M.D., Park S., Zhu Y.W., An J.H., Ruoff R.S.. Graphene-based ultracapacitors[J]. Nano Lett., 2008(8):3498-3502.  

    34. [34]

      Imran Jafri R., Rajalakshmi N., Ramaprabhu S.. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell[J]. J. Mater. Chem., 2010(20):7114-7117.  

    35. [35]

      Hulicova-Jurcakova D., Seredych M., Lu G.Q., Bandosz T.J.. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Adv. Funct. Mater., 2009(19):438-447.

  • 加载中
    1. [1]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    4. [4]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    5. [5]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    6. [6]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    7. [7]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    8. [8]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    9. [9]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    10. [10]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    11. [11]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    16. [16]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    19. [19]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    20. [20]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

Metrics
  • PDF Downloads(1)
  • Abstract views(743)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return