Citation: Jia PengJia, Ma Bu-Yun, Wei Xia-Wei, Qian Zhi-Yong. The in vitro and in vivo toxicity of gold nanoparticles[J]. Chinese Chemical Letters, ;2017, 28(4): 691-702. doi: 10.1016/j.cclet.2017.01.021 shu

The in vitro and in vivo toxicity of gold nanoparticles




  • Author Bio:
    Buyun Ma finished his five-year undergraduate study from 1992 to 1997 in Clinical Medical College of Huaxi Medical University and continued his study on imaging medicine and nuclear medicine at Sichuan University during 2001-2004 and 2008-2012.Hehas beenworking in the Department of ultrasound, West China Hospital, Sichuan University since 1997. His research is mainly engaged in ultrasound diagnosis of thyroid and breast diseases, as well as interventional ultrasound diagnosis and treatment. He has developed long-term close cooperation with the department of thyroid surgery and the department of Pathology, and he also conducted in-depth research concerning the standardized training about diagnosis of thyroid diseases, thyroid biopsy and thyroid ultrasound. He has published more than 20 articles in the international journals
    Xiawei Wei received her PhD in pharmaceutics in the West China Medical School, Sichuan University, Chengdu in China. Her research was focused on the nanotoxicologyimmunotoxicology of the nanoparticles, especially the ones used as drug delivery systems. She also studied the mechanisms underlying inflammation concerned with several types of cell deaths and damage associated molecular patterns (DAMPs). She has published over 50 scientific papers in "Cell Research", "Journal of Controlled Release", "Biomaterials", and etc. And she also published two book chapters. She also serves as the associate editor of "Nanoscience and Nanotechnology Letters" and the Editorial Board Member of several journals including "Particle and Fibre Toxicology", "Scientific Reports", and "Chemico-Biological Interactions". ganic Chemistry, Chinese Academy of Sciences in 2003; obtained his Ph.D. degree under the supervision of Professor XiaoBo Liu, and then carried out postdoctoral work at Sichuan University under the supervision of Professor MingJing Tu. In 2005 he was promoted to Full Professor, and was nominated as a Leading Scientist (PI) of Sichuan University for the National 985 Project of China in 2005.His research interests are in the area of biomaterials, biomedical engineering, drug delivery system, and nanobiotechnology. Now Prof. Qian is the AsianEditor of "J Biomed Nanotechnology", Associate Editor of "Chinese Chemical Letters", and the editorial member of "Human Gene Therapy", "Journal of Biological Engineering", and "Advanced Science, Engineerin
    Zhiyong Qian graduated from Chengdu Institute of Or-ganic Chemistry, Chinese Academy of Sciences in 2003; obtained his Ph.D. degree under the supervision of Professor XiaoBo Liu, and then carried out postdoctoral work at Sichuan University under the supervision of Professor MingJing Tu. In 2005 he was promoted to Full Professor, and was nominated as a Leading Scientist (PI) of Sichuan University for the National 985 Project of China in 2005.His research interests are in the area of biomaterials, biomedical engineering, drug delivery system, and nano biotechnology. Now Prof. Qian is the AsianEditor of "J Biomed Nanotechnology", Associate Editor of "Chinese Chemical Letters", and the editorial member of "Human Gene Therapy", "Journal of Biological Engineering", and "Advanced Science, Engineering and Medicine".
  • Corresponding author: Ma Bu-Yun, ws_mby@126.com Wei Xia-Wei, paula_8@163.com
  • Received Date: 18 November 2016
    Revised Date: 3 January 2017
    Accepted Date: 6 January 2017
    Available Online: 22 April 2017

Figures(7)

  • Gold nanoparticles, owing to their unique physicochemical and optical properties, well-established synthetic methods and easy modifications, have been widely used in biomedical science.Therefore, for their safe and efficient applications, much attention has been given to the toxicological evaluations of gold nanoparticles in biological systems.A large number of studies focusing on this problem have been carried out during the past years.However, the researches on gold nanoparticles toxicity still remain fragmentary and even contradictory with each other.This may be caused by the variety in experimental conditions.In this review, we aim to provide a better understanding about the in vitro and in vivo toxicity of gold nanoparticles by reviewing and describing the up to date literatures related to this problem and we mainly focused on these properties such as the particle size and shape, the surface charge and modification.Besides, we also summarized the adverse effect of gold nanoparticles on immune systems and analyzed the origin of the toxicity.
  • 加载中
    1. [1]

      Chen M.S., Goodman D.W.. The structure of catalytically active gold on Titania[J]. Science, 2004,306:252-255. doi: 10.1126/science.1102420

    2. [2]

      Green I.X., Tang W.J., Neurock M., Yates Jr J.T.. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst[J]. Science, 2011,333:736-739. doi: 10.1126/science.1207272

    3. [3]

      Shaw Ⅲ C.F.. Gold-based therapeutic agents[J]. Chem.Rev., 1999,99:2589-2600. doi: 10.1021/cr980431o

    4. [4]

      Finkelstein A.E., Walz D.T., Batista V.. Auranofin.new oral gold compound for treatment of rheumatoid arthritis[J]. Ann.Rheum.Dis., 1976,35:251-257. doi: 10.1136/ard.35.3.251

    5. [5]

      Fernández-López C., Polavarapu L., Solís D.M.. Gold nanorod-pNIPAM hybrids with reversible Plasmon coupling:synthesis, modeling, and SERS properties[J]. ACS Appl.Mater.Interfaces, 2015,7:12530-12538. doi: 10.1021/am5087209

    6. [6]

      Zhang Y., Wang L.M., Tan E.Z.. Uniform arrays of gold nanoparticles with different surface roughness for surface enhanced Raman scattering[J]. Chin. Chem.Lett., 2015,26:1426-1430. doi: 10.1016/j.cclet.2015.06.004

    7. [7]

      Ke X.B., Sarina S., Zhao J.. Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation[J]. Chem.Commun., 2012,48:3509-3511. doi: 10.1039/c2cc17977f

    8. [8]

      Kuo W.S., Chang Y.T., Cho K.C.. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy[J]. Biomaterials, 2012,33:3270-3278. doi: 10.1016/j.biomaterials.2012.01.035

    9. [9]

      Jana N.R., Peng X.G.. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals[J]. J.Am.Chem.Soc., 2003,125:14280-14281. doi: 10.1021/ja038219b

    10. [10]

      Vigderman L., Zubarev E.R.. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent[J]. Chem.Mater., 2013,25:1450-1457. doi: 10.1021/cm303661d

    11. [11]

      Kim D.Y., Yu T., Cho E.C.. Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties[J]. Angew.Chem. Int.Ed., 2011,50:6328-6331. doi: 10.1002/anie.201100983

    12. [12]

      Srinivasan S., Bhardwaj V., Nagasetti A.. Multifunctional surface-enhanced raman spectroscopy-detectable silver nanoparticles for combined photodynamic therapy and pH-triggered chemotherapy[J]. J.Biomed. Nanotechnol., 2016,12:2202-2219. doi: 10.1166/jbn.2016.2312

    13. [13]

      Qiu X., Tang L.C., Dong C.Q.. Characterization of gold nanoparticle bioconjugation by resonance light scattering correlation spectroscopy[J]. Chin. Chem.Lett., 2010,21:1227-1230. doi: 10.1016/j.cclet.2010.05.007

    14. [14]

      Liao J.F., Li W.T., Peng J.R.. Combined cancer photothermal-chemotherapy based on doxorubicin/gold nanorod-loaded polymersomes[J]. Theranostics, 2015,5:345-356. doi: 10.7150/thno.10731

    15. [15]

      Peng J.R., Qi T.T., Liao J.F.. Mesoporous magnetic gold nanoclusters as theranostic carrier for chemo-photothermal co-therapy of breast cancer[J]. Theranostics, 2014,4:678-692. doi: 10.7150/thno.7869

    16. [16]

      Yavuz M.S., Cheng Y.Y., Chen J.Y.. Gold nanocages covered by smart polymers for controlled release with near-infrared light[J]. Nat.Mater., 2009,8:935-939. doi: 10.1038/nmat2564

    17. [17]

      Wu J.D., Liu B., Wu H.M.. A gold nanoparticle platform for the delivery of functional TGF-β1 siRNA Into cancer cells[J]. J.Biomed.Nanotechnol., 2016,12:800-810. doi: 10.1166/jbn.2016.2217

    18. [18]

      Cheng B., He H.C., Huang T.. Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy[J]. J.Biomed.Nanotechnol., 2016,12:435-449. doi: 10.1166/jbn.2016.2195

    19. [19]

      Sun L., Joh D.Y., Al-Zaki A.. Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme[J]. J.Biomed.Nanotechnol., 2016,12:347-356. doi: 10.1166/jbn.2016.2173

    20. [20]

      Kim D., Park S., Lee J.H., Jeong Y.Y., Jon S.. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging[J]. J.Am.Chem.Soc., 2007,129:7661-7665. doi: 10.1021/ja071471p

    21. [21]

      Xu L.G., Liu Y., Chen Z.Y.. Surface-engineered gold nanorods:promising DNA vaccine adjuvant for HIV-1 treatment[J]. Nano Lett., 2012,12:2003-2012. doi: 10.1021/nl300027p

    22. [22]

      Mohammed A.M.. Fabrication and characterization of gold nano particles for DNA biosensor applications[J]. Chin.Chem.Lett., 2016,27:801-806. doi: 10.1016/j.cclet.2016.01.013

    23. [23]

      Fadeel B., Garcia-Bennett A.E.. Better safe than sorry:understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications[J]. Adv.Drug Deliv.Rev., 2010,62:362-374. doi: 10.1016/j.addr.2009.11.008

    24. [24]

      Kagan V.E., Bayir H., Shvedova A.A.. Nanomedicine and nanotoxicology:two sides of the same coin[J]. Nanomedicine, 2005,1:313-316. doi: 10.1016/j.nano.2005.10.003

    25. [25]

      Patra H.K., Banerjee S., Chaudhuri U., Lahiri P., Dasgupta A.K.. Cell selective response to gold nanoparticles[J]. Nanomedicine, 2007,3:111-119. doi: 10.1016/j.nano.2007.03.005

    26. [26]

      Peng G., Tisch U., Adams O.. Diagnosing lung cancer in exhaled breath using gold nanoparticles[J]. Nat.Nanotechnol., 2009,4:669-673. doi: 10.1038/nnano.2009.235

    27. [27]

      Zhang X.D., Guo M.L., Wu H.Y.. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy[J]. Int.J.Nanomed., 2009,4:165-173.  

    28. [28]

      Sung J.H., Ji J.H., Park J.D.. Subchronic inhalation toxicity of gold nanoparticles[J]. Part.Fibre Toxicol., 2011,816. doi: 10.1186/1743-8977-8-16

    29. [29]

      Mukherjee S., Sau S., Madhuri D.. Green synthesis and characterization of monodispersed gold nanoparticles:toxicity study, delivery of doxorubicin and its bio-distribution in mouse model[J]. J.Biomed.Nanotechnol., 2016,12:165-181. doi: 10.1166/jbn.2016.2141

    30. [30]

      Dreaden E.C., Alkilany A.M., Huang X.H., Murphy C.J., El-Sayed M.A.. The golden age:gold nanoparticles for biomedicine[J]. Chem.Soc.Rev., 2012,41:2740-2779. doi: 10.1039/C1CS15237H

    31. [31]

      Alkilany A.M.. Murphy C.J[J]. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J.Nanopart.Res., 2010,12:2313-2333.  

    32. [32]

      Khlebtsov N.. Dykman L.Biodistribution and toxicity of engineered gold nanoparticles:a review of in vitro and in vivo studies[J]. Chem.Soc.Rev., 2011,40:1647-1671. doi: 10.1039/C0CS00018C

    33. [33]

      Li J.X., Chang X.L., Chen X.X.. Toxicity of inorganic nanomaterials in biomedical imaging[J]. Biotechnol.Adv., 2014,32:727-743. doi: 10.1016/j.biotechadv.2013.12.009

    34. [34]

      Fischer H.C., Chan W.C.. Nanotoxicity:the growing need for in vivo study[J]. Curr.Opin.Biotechnol., 2007,18:565-571. doi: 10.1016/j.copbio.2007.11.008

    35. [35]

      Jiang W., Kim B.Y.S., Rutka J.T., Chan W.C.W.. Nanoparticle-mediated cellular response is size-dependent[J]. Nat.Nanotechnol., 2008,3:145-150. doi: 10.1038/nnano.2008.30

    36. [36]

      Ahn S., Seo E., Kim K.H.. Physical Property control on the cellular uptake pathway and spatial distribution of nanoparticles in cells[J]. J.Biomed. Nanotechnol., 2015,11:1051-1070. doi: 10.1166/jbn.2015.2037

    37. [37]

      Osaki F., Kanamori T., Sando S., Sera T., Aoyama Y.. A quantum dot conjugated sugar ball and its cellular uptake.On the size effects of endocytosis in the subviral region[J]. J.Am.Chem.Soc., 2004,126:6520-6521. doi: 10.1021/ja048792a

    38. [38]

      Lu F., Wu S.H., Hung Y., Mou C.Y.. Size effect on cell uptake in well-suspended: uniform mesoporous silica nanoparticles[J]. Small, 2009,5:1408-1413. doi: 10.1002/smll.v5:12

    39. [39]

      Ma X.W., Wu Y.Y., Jin S.B.. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment[J]. ACS Nano, 2011,5:8629-8639. doi: 10.1021/nn202155y

    40. [40]

      Chithrani B.D., Ghazani A.A., Chan W.C.W.. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Lett., 2006,6:662-668. doi: 10.1021/nl052396o

    41. [41]

      Pan Y., Neuss S., Leifert A.. Size-dependent cytotoxicity of gold nanoparticles[J]. Small, 2007,3:1941-1949. doi: 10.1002/(ISSN)1613-6829

    42. [42]

      Pan Y., Leifert A., Ruau D.. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage[J]. Small, 2009,5:2067-2076. doi: 10.1002/smll.v5:18

    43. [43]

      Senut M.C., Zhang Y.H., Liu F.C.. Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives[J]. Small, 2016,12:631-646. doi: 10.1002/smll.v12.5

    44. [44]

      Yen H.J., Hsu S.H., Tsai C.L.. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes[J]. Small, 2009,5:1553-1561. doi: 10.1002/smll.v5:13

    45. [45]

      Freese C., Uboldi C., Gibson M.I.. Uptake and cytotoxicity of citrate-coated gold nanospheres:comparative studies on human endothelial and epithelial cells[J]. Part.Fibre.Toxicol., 2012,923. doi: 10.1186/1743-8977-9-23

    46. [46]

      Vijayakumar S., Ganesan S.. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents[J]. J.Nanomater., 2012,2012734398.  

    47. [47]

      Choi S.Y., Jeong S., Jang S.H.. In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells[J]. Toxicol.Vitro, 2012,26:229-237. doi: 10.1016/j.tiv.2011.11.016

    48. [48]

      Mironava T., Hadjiargyrou M., Simon M., Jurukovski V., Rafailovich M.H.. Gold nanoparticles cellular toxicity and recovery:effect of size, concentration and exposure time[J]. Nanotoxicology, 2010,4:120-137. doi: 10.3109/17435390903471463

    49. [49]

      Li Z.B., Tang S.Y., Wang B.K.. Metabolizable small gold nanorods:size-dependent cytotoxicity, cell uptake and in vivo biodistribution[J]. ACS Biomater. Sci.Eng., 2016,2:789-797. doi: 10.1021/acsbiomaterials.5b00538

    50. [50]

      Qu Y.H., Lü X.Y.. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts-fetal[J]. Biomed.Mater., 2009,4025007. doi: 10.1088/1748-6041/4/2/025007

    51. [51]

      Coradeghini R., Gioria S., García C.P.. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts[J]. Toxicol. Lett., 2013,217:205-216. doi: 10.1016/j.toxlet.2012.11.022

    52. [52]

      Wang L.M., Jiang X.M., Ji Y.L.. Surface chemistry of gold nanorods:origin of cell membrane damage and cytotoxicity[J]. Nanoscale, 2013,58384. doi: 10.1039/c3nr01626a

    53. [53]

      Alkilany A.M., Nagaria P.K., Hexel C.R.. Cellular uptake and cytotoxicity of gold nanorods:molecular origin of cytotoxicity and surface effects[J]. Small, 2009,5:701-708. doi: 10.1002/smll.v5:6

    54. [54]

      Alkilany A.M., Shatanawi A., Kurtz T., Caldwell R.B., Caldwell R.W.. Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel:importance of surface modification[J]. Small, 2012,8:1270-1278. doi: 10.1002/smll.201101948

    55. [55]

      Takahashi H., Niidome Y., Niidome T.. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity[J]. Langmuir, 2006,22:2-5. doi: 10.1021/la0520029

    56. [56]

      Murphy C.J., Gole A.M., Stone J.W.. Gold nanoparticles in biology: beyond toxicity to cellular imaging[J]. Acc.Chem.Res., 2008,41:1721-1730. doi: 10.1021/ar800035u

    57. [57]

      Niidome T., Yamagata M., Okamoto Y.. PEG-modifled gold nanorods with a stealth character for in vivo applications[J]. J.Control.Release, 2006,114:343-347. doi: 10.1016/j.jconrel.2006.06.017

    58. [58]

      Uboldi C., Bonacchi D., Lorenzi G.. Gold nanoparticles induce cytotoxicity in the alveolar type-Ⅱ cell lines A549 and NCIH441[J]. Part.Fibre Toxicol., 2009,618. doi: 10.1186/1743-8977-6-18

    59. [59]

      Freese C., Uboldi C., Gibson M.. Uptake and cytotoxicity of citrate-coated gold nanospheres:comparative studies on human endothelial and epithelial cells[J]. Part.Fibre Toxicol., 2012,923. doi: 10.1186/1743-8977-9-23

    60. [60]

      Chompoosor A., Saha K., Ghosh P.S.. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles[J]. Small, 2010,6:2246-2249. doi: 10.1002/smll.v6:20

    61. [61]

      P.del Pino, Yang F., Pelaz B.. Basic physicochemical properties of polyethylene glycol coated gold nanoparticles that determine their interaction with cells[J]. Angew.Chem.Int.Ed., 2016,55:5483-5487. doi: 10.1002/anie.201511733

    62. [62]

      Uz M., Bulmus V., Altinkaya S.A.. Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle-cell interactions:an investigation on cell cycle, apoptosis, and DNA damage[J]. Langmuir, 2016,32:5997-6009. doi: 10.1021/acs.langmuir.6b01289

    63. [63]

      Leite P.E.C., Pereira M.R., Santos C.A.D.N.. Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death[J]. Toxicol.Vitro, 2015,29:819-827. doi: 10.1016/j.tiv.2015.02.010

    64. [64]

      Brandenberger C., C.Mühlfeld , Ali Z.. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles[J]. Small, 2010,6:1669-1678. doi: 10.1002/smll.v6:15

    65. [65]

      Yasun E., Li C.M., Barut I.. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods[J]. Nanoscale, 2015,7:10240-10248. doi: 10.1039/C5NR01704A

    66. [66]

      Wang L.M., Li J.Y., Pan J.. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes[J]. J.Am.Chem.Soc., 2013,135:17359-17368. doi: 10.1021/ja406924v

    67. [67]

      Au L., Zhang Q., Cobley C.M.. Quantifying the cellular uptake of antibody-conjugated au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry[J]. ACS Nano, 2010,4:35-42. doi: 10.1021/nn901392m

    68. [68]

      Yue Z.G., Wei W., Lv P.P.. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles[J]. Biomacromolecules, 2011,12:2440-2446. doi: 10.1021/bm101482r

    69. [69]

      Goodman C.M., McCusker C.D., Yilmaz T., Rotello V.M.. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains[J]. Bioconjugate Chem., 2004,15:897-900. doi: 10.1021/bc049951i

    70. [70]

      Arvizo R.R., Miranda O.R., Thompson M.A.. Effect of nanoparticle surface charge at the plasma membrane and beyond[J]. Nano Lett., 2010,10:2543-2548. doi: 10.1021/nl101140t

    71. [71]

      Wang Y.C., Black K.C.L., Luehmann H.. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment[J]. ACS Nano, 2013,7:2068-2077. doi: 10.1021/nn304332s

    72. [72]

      Li Y., Kröger M., Liu W.K.. Shape effect in cellular uptake of PEGylated nanoparticles:comparison between sphere, rod, cube and disk[J]. Nanoscale, 2015,7:16631-16646. doi: 10.1039/C5NR02970H

    73. [73]

      Li Y., Yue T.T., Yang K., Zhang X.R.. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics[J]. Biomaterials, 2012,33:4965-4973. doi: 10.1016/j.biomaterials.2012.03.044

    74. [74]

      Nangia S., Sureshkumar R.. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes[J]. Langmuir, 2012,28:17666-17671. doi: 10.1021/la303449d

    75. [75]

      Wang Z.J., Xie D., Liu H.Z., Bao Z.H., Wang Y.J.. Toxicity assessment of precise engineered gold nanoparticles with different shapes in zebrafish embryos[J]. RSC Adv., 2016,6:33009-33013. doi: 10.1039/C6RA00632A

    76. [76]

      Karakoçak B.B., Raliya R., Davis J.T.. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line[J]. Toxicol.In Vitro, 2016,37:61-69. doi: 10.1016/j.tiv.2016.08.013

    77. [77]

      Favi P.M., Gao M., Arango L.J.S.. Shape and surface effects on the cytotoxicity of nanoparticles:gold nanospheres versus gold nanostars[J]. J. Biomed.Mater.Res.A, 2015,103:3449-3462. doi: 10.1002/jbm.v103.11

    78. [78]

      Wan J., Wang J.H., Liu T.. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo[J]. Sci.Rep., 2015,511398. doi: 10.1038/srep11398

    79. [79]

      Black K.C.L., Wang Y.C., Luehmann H.P.. Radioactive 198Au-Doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution[J]. ACS Nano, 2014,8:4385-4394. doi: 10.1021/nn406258m

    80. [80]

      Hillyer J.F., Albrecht R.M.. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles[J]. J.Pharm.Sci., 2001,90:1927-1936. doi: 10.1002/jps.1143

    81. [81]

      Balogh L., Nigavekar S.S., Nair B.M.. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models[J]. Nanomedicine, 2007,3:281-296. doi: 10.1016/j.nano.2007.09.001

    82. [82]

      W.H.De Jong, Hagens W.I., Krystek P.. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration[J]. Biomaterials, 2008,29:1912-1919. doi: 10.1016/j.biomaterials.2007.12.037

    83. [83]

      Hirn S., M.Semmler-Behnke , Schleh C.. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration[J]. Eur.J.Pharm.Biopharm., 2011,77:407-416. doi: 10.1016/j.ejpb.2010.12.029

    84. [84]

      Schleh C., M.Semmler-Behnke , Lipka J.. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration[J]. Nanotoxicology, 2012,6:36-46. doi: 10.3109/17435390.2011.552811

    85. [85]

      Zhang X.D., Wu D., Shen X.. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles[J]. Int.J.Nanomed., 2011,6:2071-2081.  

    86. [86]

      M.Pannerec-Varna , Ratajczak P., Bousquet G.. In vivo uptake and cellular distribution of gold nanoshells in a preclinical model of xenografted human renal cancer[J]. Gold Bull., 2013,46:257-265. doi: 10.1007/s13404-013-0115-8

    87. [87]

      Wang L.M., Li Y.F., Zhou L.J.. Characterization of gold nanorods in vivo by integrated analytical techniques:their uptake, retention, and chemical forms[J]. Anal.Bioanal.Chem., 2010,396:1105-1114. doi: 10.1007/s00216-009-3302-y

    88. [88]

      Akiyama Y., Mori T., Katayama Y., Niidome T.. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice[J]. J.Control.Release, 2009,139:81-84. doi: 10.1016/j.jconrel.2009.06.006

    89. [89]

      Lee U., Yoo C.J., Kim Y.J., Yoo Y.M.. Cytotoxicity of gold nanoparticles in human neural precursor cells and rat cerebral cortex[J]. J.Biosci.Bioeng., 2016,121:341-344. doi: 10.1016/j.jbiosc.2015.07.004

    90. [90]

      Sadauskas E., Danscher G., Stoltenberg M.. Protracted elimination of gold nanoparticles from mouse liver[J]. Nanomedicine, 2009,5:162-169. doi: 10.1016/j.nano.2008.11.002

    91. [91]

      Cho W.S., Cho M., Jeong J.. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles[J]. Toxicol.Appl.Pharmacol., 2009,36:16-24.  

    92. [92]

      Wang J.Y., Chen J., Yang J.. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution toxicity, and cancer radiation therapy[J]. Int.J.Nanomed., 2016,11:3475-3485. doi: 10.2147/IJN

    93. [93]

      Sereemaspun A., Rojanathanes R., Wiwanitkit V.. Effect of gold nanoparticle on renal cell:an implication for exposure risk[J]. Ren.Fail., 2008,30:323-325. doi: 10.1080/08860220701860914

    94. [94]

      Abdelhalim M.A.K., Jarrar B.M.. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles[J]. Lipids Health Dis., 2011,10163. doi: 10.1186/1476-511X-10-163

    95. [95]

      Zhang X.D., Wu H.Y., Wu D.. Toxicologic effects of gold nanoparticles in vivo by different administration routes[J]. Int.J.Nanomed., 2010,5:771-781.  

    96. [96]

      Balasubramanian S.K., Jittiwat J., Manikandan J.. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats[J]. Biomaterials, 2010,31:2034-2042. doi: 10.1016/j.biomaterials.2009.11.079

    97. [97]

      Shi X.L., Zhu Y.T., Hua W.D.. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel[J]. Nano Res., 2016,9:2097-2109. doi: 10.1007/s12274-016-1100-3

    98. [98]

      Lipka J., Semmler-Behnke M., Sperling R.A.. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection[J]. Biomaterials, 2010,31:6574-6581. doi: 10.1016/j.biomaterials.2010.05.009

    99. [99]

      Rambanapasi C., Zeevaart J.R., Buntting H.. Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles in rats[J]. Molecules, 2016,21763. doi: 10.3390/molecules21060763

    100. [100]

      C.Lasagna-Reeves , D.Gonzalez-Romero , Barria M.A.. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice[J]. Biochem.Biophys.Res.Commun., 2010,393:649-655. doi: 10.1016/j.bbrc.2010.02.046

    101. [101]

      M.Semmler-Behnke , Kreyling W.G., Lipka J.. Biodistribution of 1.4-and 18-nm gold particles in rats[J]. Small, 2008,4:2108-2111. doi: 10.1002/smll.v4:12

    102. [102]

      O.Bar-Ilan , Albrecht R.M., Fako V.E., Furgeson D.Y.. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos[J]. Small, 2009,5:1897-1910. doi: 10.1002/smll.v5:16

    103. [103]

      Shukla R., Bansal V., Chaudhary M.. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview[J]. Langmuir, 2005,21:10644-10654. doi: 10.1021/la0513712

    104. [104]

      Liu Z.M., Li W.Q., Wang F.. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells[J]. Nanoscale, 2012,47135. doi: 10.1039/c2nr31355c

    105. [105]

      Brandenberger C., Rothen-Rutishauser B., Mühlfeld C.. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model[J]. Toxicol.Appl.Pharmacol., 2010,242:56-65. doi: 10.1016/j.taap.2009.09.014

    106. [106]

      Bastu's N.G., Sánchez-Tilló E., Pujals S.. Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response[J]. ACS Nano, 2009,3:1335-1344. doi: 10.1021/nn8008273

    107. [107]

      Cheung K.L., Chen H.J., Chen Q.L.. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils[J]. Nanoscale, 2012,4:4447-4449. doi: 10.1039/c2nr30435j

    108. [108]

      Jia H.Y., Liu Y., Zhang X.J.. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum[J]. J.Am.Chem.Soc., 2009,131:40-41. doi: 10.1021/ja808033w

    109. [109]

      Iswarya V., Manivannan J., De A.. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels[J]. Environ.Sci.Pollut. Res., 2016,23:4844-4858. doi: 10.1007/s11356-015-5683-0

    110. [110]

      Li J.J., Hartono D., Ong C.N., Bay B.H., Yung L.Y.L.. Autophagy and oxidative stress associated with gold nanoparticles[J]. Biomaterials, 2010,31:5996-6003. doi: 10.1016/j.biomaterials.2010.04.014

    111. [111]

      Ding F.G., Li Y.P., Liu J.. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells[J]. Int. J.Nanomed., 2014,9:4317-4330.  

    112. [112]

      Tsai Y.Y., Huang Y.H., Chao Y.L.. Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis[J]. ACS Nano, 2011,5:9354-9369. doi: 10.1021/nn2027775

    113. [113]

      Ramalingam V., Revathidevi S., Shanmuganayagam T., Muthulakshmi L., Rajaram R.. Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells[J]. RSC Adv., 2016,6:20598-20608. doi: 10.1039/C5RA26781A

    114. [114]

      Wang L.M., Liu Y., Li W.. Selective targeting of gold nanorods at the mitochondria of cancer cells:implications for cancer therapy[J]. Nano Lett., 2011,11:772-780. doi: 10.1021/nl103992v

    115. [115]

      Chithrani B.D., Chan W.C.W.. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes[J]. Nano Lett., 2007,7:1542-1550. doi: 10.1021/nl070363y

    116. [116]

      Grace Nirmala J., Akila S., Muthukumar Nadar M.S.A., Narendhirakannan R.T., Chatterjeeb S.. Biosynthesized Vitis vinifera seed gold nanoparticles Induce apoptotic cell death in A431 skin cancer cells[J]. RSC Adv., 2016,6:82205-82218. doi: 10.1039/C6RA16310F

    117. [117]

      Tsoli M., Kuhn H., Brandau W., Esche H., Schmid G.. Cellular uptake and toxicity of Au55 clusters[J]. Small, 2005,1:841-844. doi: 10.1002/(ISSN)1613-6829

    118. [118]

      Chuang S.M., Lee Y.H., Liang R.Y.. Extensive evaluations of the cytotoxic effects of gold nanoparticles[J]. Biochim.Biophys.Acta, 2013,1830:4960-4973. doi: 10.1016/j.bbagen.2013.06.025

  • 加载中
    1. [1]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    4. [4]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    5. [5]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    6. [6]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    7. [7]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    8. [8]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    9. [9]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    10. [10]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    13. [13]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    14. [14]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    15. [15]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    16. [16]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    17. [17]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    18. [18]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

Metrics
  • PDF Downloads(37)
  • Abstract views(1030)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return