Citation: Ma Xian-Tao, Xu Hao, Xiao Ying-Lin, Su Chen-Liang, Liu Jian-Ping, Xu Qing. Direct synthesis of nitriles by Cu/DMEDA/TEMPO-catalyzed aerobic oxidation of primary amines with air[J]. Chinese Chemical Letters, ;2017, 28(6): 1336-1339. doi: 10.1016/j.cclet.2017.01.017 shu

Direct synthesis of nitriles by Cu/DMEDA/TEMPO-catalyzed aerobic oxidation of primary amines with air

Figures(2)

  • By screening the copper catalysts, ligands, and the reaction conditions, a simple CuCl/DMEDA/TEMPO catalyst system readily available from commercial sources is developed for a direct and selective synthesis of the useful nitriles by an aerobic oxidation reaction of primary amines using air as an advantageous oxidant under mild conditions.
  • 加载中
    1. [1]

      G. Pollak, F. Romeder, H. P. Hagedorn, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2012.

    2. [2]

      A. J. Fatiadi, Preparation and Synthetic Applications of Cyano Compounds, in: S. Patai, Z. Rappaport (Eds. ), Triple-Bonded Functional Groups, Wiley, New York, 1983, pp. 1057-1303.

    3. [3]

      Miller J.S., Manson J.L.. Designer magnets containing cyanides and nitriles[J]. Acc. Chem. Res., 2001,34:563-570. doi: 10.1021/ar0000354

    4. [4]

      Yamaguchi K., Matsushita M., Mizuno N.. Efficient hydration of nitriles to amides in water, catalyzed by ruthenium hydroxide supported on alumina[J]. Angew. Chem. Int. Ed., 2004,43:1576-1580. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Moorthy J.N., Singhal N.. Facile and highly selective conversion of nitriles to amides via indirect acid-catalyzed hydration using TFA or AcOH-H2SO4[J]. J. Org. Chem., 2005,70:1926-1929. doi: 10.1021/jo048240a

    6. [6]

      Jnaneshwara G.K., Deshpande V.H., Lalithambika M., Ravindranathan T., Bedekar A.V.. Natural Kaolinitic clay catalyzed conversion of nitriles to 2-oxazolines[J]. Tetrahedron Lett., 1998,39:459-462. doi: 10.1016/S0040-4039(97)10575-5

    7. [7]

      Chen H., Dai W., Chen Y.. Efficient and selective nitrile hydration reaction in water catalyzed by unexpected dimethylsulfinyl anion generated in situ from CsOH and DMSO[J]. Green Chem., 2014,16:2136-2141. doi: 10.1039/C3GC42310G

    8. [8]

      Li Y., Chen H., Liu J., Wan X., Xu Q.. Clean synthesis of primary to tertiary carboxamides by CsOH-catalyzed aminolysis of nitriles in water[J]. Green Chem., 2016,18:4865-4870. doi: 10.1039/C6GC01565D

    9. [9]

      Bacon R.G.R., Hill H.A.O.. Metal ions and complexes in organic reactions. Part I. Substitution reactions between aryl halides and cuprous salts in organic solvents[J]. J. Chem. Soc., 1964:1097-1107. doi: 10.1039/jr9640001097

    10. [10]

      Benz P., Muntwyler R., Wohlgemuth R.. Chemoenzymatic synthesis of chiral carboxylic acids via nitriles[J]. J. Chem. Technol. Biotechnol., 2007,82:1087-1098. doi: 10.1002/(ISSN)1097-4660

    11. [11]

      Ellis G.P., Alexander T.M.R.. Cyanation of aromatic halides[J]. Chem. Rev., 1987,87:779-794. doi: 10.1021/cr00080a006

    12. [12]

      Grasselli R.K.. Advances and future trends in selective oxidation and ammoxidation catalysis[J]. Catal. Today, 1999,49:141-153. doi: 10.1016/S0920-5861(98)00418-0

    13. [13]

      Yamaguchi H., Fujiwara Y., Ogasawara M.. A tungsten-tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles[J]. Angew. Chem. Int. Ed., 2007,46:3922-3925. doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Ishihara K., Furuya Y., Yamamoto H.. Rhenium (Ⅶ) oxo complexes as extremely active catalysts in the dehydration of primary amides and aldoximes to nitriles[J]. Angew. Chem. Int. Ed., 2002,41:2983-2986. doi: 10.1002/1521-3773(20020816)41:16<2983::AID-ANIE2983>3.0.CO;2-X

    15. [15]

      Zhu Y., Li L., Shen Z.. Cu-catalyzed cyanation of arylboronic acids with acetonitrile:a dual role of TEMPO[J]. Chem. A Eur. J., 2016,21:13246-13252.

    16. [16]

      Mondal B., Acharyya K., Howlader P., Mukherjee P.S.. Molecular cage impregnated palladium nanoparticles:efficient additive-free heterogeneous catalysts for cyanation of aryl halides[J]. J. Am. Chem. Soc., 2016,138:1709-1716. doi: 10.1021/jacs.5b13307

    17. [17]

      Ryland B.L., Stahl S.S.. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems[J]. Angew. Chem. Int. Ed., 2014,53:8824-8838. doi: 10.1002/anie.201403110

    18. [18]

      Zhang J., Wang Z., Wang Y.. A metal-free catalytic system for the oxidation of benzylic methylenes and primary amines under solvent-free conditions[J]. Green Chem., 2009,11:1973-1978. doi: 10.1039/b919346b

    19. [19]

      Bagherzade G., Zali A., Shokrolahi A.. Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc[J]. Chin. Chem. Lett., 2015,26:603-606. doi: 10.1016/j.cclet.2015.01.009

    20. [20]

      Bernskoetter W.H., Brookhart M.. Kinetics and mechanism of iridiumcatalyzed dehydrogenation of primary amines to nitriles[J]. Organometallics, 2008,27:2036-2045. doi: 10.1021/om701148t

    21. [21]

      Tseng K.N.T., Rizzi A.M., Szymczak N.K.. Oxidant-free conversion of primary amines to nitriles[J]. J. Am. Chem. Soc., 2013,135:16352-16355. doi: 10.1021/ja409223a

    22. [22]

      Damodara D., Arundhathi R., Likhar P.R.. Copper nanoparticles from copper aluminum hydrotalcite:an efficient catalyst for acceptor-and oxidant-free dehydrogenation of amines and alcohols[J]. Adv. Synth. Catal., 2014,356:189-198. doi: 10.1002/adsc.201300453

    23. [23]

      Kametani T., Takahashi K., Ohsawa T., Ihara M.. Oxidation of amines to nitriles or aldehydes using copper (Ⅰ) chloride[J]. Synthesis, 1977245.

    24. [24]

      Corker E.C., Mentzel U.V., Mielby J., Riisager A., Fehrmann R.. An alternative pathway for production of acetonitrile:ruthenium catalysed aerobic dehydrogenation of ethylamine[J]. Green Chem., 2013,15:928-933. doi: 10.1039/c3gc36513a

    25. [25]

      Pavel O.D., Goodrich P., Cristian L.. Direct oxidation of amines to nitriles in the presence of ruthenium-terpyridyl complex immobilized on ILs/SILP[J]. Catal. Sci. Technol., 2015,5:2696-2704. doi: 10.1039/C5CY00011D

    26. [26]

      Ovoshchnikov D.S., Donoeva B.G., Golovko V.B.. Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO2[J]. ACS Catal., 2015,5:34-38. doi: 10.1021/cs501186n

    27. [27]

      Hammond C., Schuemperli M.T., Hermans I.. Insights into the oxidative dehydrogenation of amines with nanoparticulate iridium oxide[J]. Chem. Eur. J., 2013,19:13193-13198. doi: 10.1002/chem.v19.39

    28. [28]

      Mahadevan V., J.L. DuBois, Hedman B., Hodgson K.O., Stack T.D.P.. Exogenous substrate reactivity with a [Cu(Ⅲ)2O2]2+ core:structural implications[J]. J. Am. Chem. Soc., 1999,121:5583-5584. doi: 10.1021/ja983635v

    29. [29]

      Mirica L.M., Rudd D.J., Vance M.A.. μ-η2:η2-Peroxodicopper (Ⅱ) complex with a secondary diamine ligand:a functional model of tyrosinase[J]. J. Am. Chem. Soc., 2006,128:2654-2665. doi: 10.1021/ja056740v

    30. [30]

      Wang J., Lu S., Cao X., Gu H.. Common metal of copper (0) as an efficient catalyst for preparation of nitriles and imines by controlling additives[J]. Chem. Commun., 2014,50:5637-5640. doi: 10.1039/c4cc01389a

    31. [31]

      Kim J., Stahl S.S.. Cu/Nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature[J]. ACS Catal., 2013,3:1652-1656. doi: 10.1021/cs400360e

    32. [32]

      Varyani M., Khatri P.K., Jain S.L.. Amino acid derived ionic liquid supported iron schiff base catalyzed greener approach for the aerobic oxidation of amines to nitriles[J]. Tetrahedron Lett., 2016,57:723-727. doi: 10.1016/j.tetlet.2015.12.082

    33. [33]

      Jagadeesh R.V., Junge H., Beller M.. Nanorust-catalyzed benign oxidation of amines for selective synthesis of nitriles[J]. ChemSusChem, 2015,8:92-96. doi: 10.1002/cssc.201402613

    34. [34]

      Ye J.Q., Zhang Z.L., Zha Z.G., Wang Z.Y.. A green and efficient access to aryl nitriles via an electrochemical anodic oxidation[J]. Chin. Chem. Lett., 2014,25:1112-1114. doi: 10.1016/j.cclet.2014.04.024

    35. [35]

      Ma X., Su C., Xu Q.. N-Alkylation by hydrogen autotransfer reactions in hydrogen transfer reactions:reductions and beyond (Eds. Guillena G., D. J. Ramón)[J]. Top. Curr. Chem., 2016,374(27):1-74.

    36. [36]

      Xu Q., Li Q.. Recent advances of transition metal-catalyzed aerobic dehydrative reactions of alcohols and amines and related researches[J]. Chin. J. Org. Chem., 2013,33:18-35. doi: 10.6023/cjoc201208016

    37. [37]

      Jiang L., Jin L., Tian H.. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions[J]. Chem. Commun., 2011,47:10833-10835. doi: 10.1039/c1cc14242a

    38. [38]

      Tian H., Yu X., Li Q., Wang J., Xu Q.. General, green, and scalable synthesis of imines from alcohols and amines by a mild and efficient copper-catalyzed aerobic oxidative reaction in open air at room temperature[J]. Adv. Synth. Catal., 2012,354:2671-2677. doi: 10.1002/adsc.v354.14/15

    39. [39]

      Zhang E., Tian H., Xu S., Yu X., Xu Q.. Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air[J]. Org. Lett., 2013,15:2704-2707. doi: 10.1021/ol4010118

    40. [40]

      Huang B., Tian H., Lin S.. Cu (Ⅰ)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions[J]. Tetrahedron Lett., 2013,54:2861-2864. doi: 10.1016/j.tetlet.2013.03.098

    41. [41]

      Liu J., Wang C., Ma X.. Simple synthesis of benzazoles by substratepromoted CuI-catalyzed aerobic oxidative cyclocondensation of o-thio/amino/hydroxyanilines and amines under air[J]. Catal. Lett., 2016,146:2139-2148. doi: 10.1007/s10562-016-1818-2

  • 加载中
    1. [1]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    2. [2]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    3. [3]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    4. [4]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    7. [7]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    8. [8]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    9. [9]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    10. [10]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    11. [11]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    12. [12]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    13. [13]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    14. [14]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    19. [19]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    20. [20]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

Metrics
  • PDF Downloads(4)
  • Abstract views(1386)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return