Direct synthesis of nitriles by Cu/DMEDA/TEMPO-catalyzed aerobic oxidation of primary amines with air
- Corresponding author: Su Chen-Liang, chmsuc@szu.edu.cn Liu Jian-Ping, 518liujianping@163.com Xu Qing, qing-xu@wzu.edu.cn; xuqingyk@hotmail.com
Citation:
Ma Xian-Tao, Xu Hao, Xiao Ying-Lin, Su Chen-Liang, Liu Jian-Ping, Xu Qing. Direct synthesis of nitriles by Cu/DMEDA/TEMPO-catalyzed aerobic oxidation of primary amines with air[J]. Chinese Chemical Letters,
;2017, 28(6): 1336-1339.
doi:
10.1016/j.cclet.2017.01.017
G. Pollak, F. Romeder, H. P. Hagedorn, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2012.
A. J. Fatiadi, Preparation and Synthetic Applications of Cyano Compounds, in: S. Patai, Z. Rappaport (Eds. ), Triple-Bonded Functional Groups, Wiley, New York, 1983, pp. 1057-1303.
Miller J.S., Manson J.L.. Designer magnets containing cyanides and nitriles[J]. Acc. Chem. Res., 2001,34:563-570. doi: 10.1021/ar0000354
Yamaguchi K., Matsushita M., Mizuno N.. Efficient hydration of nitriles to amides in water, catalyzed by ruthenium hydroxide supported on alumina[J]. Angew. Chem. Int. Ed., 2004,43:1576-1580. doi: 10.1002/(ISSN)1521-3773
Moorthy J.N., Singhal N.. Facile and highly selective conversion of nitriles to amides via indirect acid-catalyzed hydration using TFA or AcOH-H2SO4[J]. J. Org. Chem., 2005,70:1926-1929. doi: 10.1021/jo048240a
Jnaneshwara G.K., Deshpande V.H., Lalithambika M., Ravindranathan T., Bedekar A.V.. Natural Kaolinitic clay catalyzed conversion of nitriles to 2-oxazolines[J]. Tetrahedron Lett., 1998,39:459-462. doi: 10.1016/S0040-4039(97)10575-5
Chen H., Dai W., Chen Y.. Efficient and selective nitrile hydration reaction in water catalyzed by unexpected dimethylsulfinyl anion generated in situ from CsOH and DMSO[J]. Green Chem., 2014,16:2136-2141. doi: 10.1039/C3GC42310G
Li Y., Chen H., Liu J., Wan X., Xu Q.. Clean synthesis of primary to tertiary carboxamides by CsOH-catalyzed aminolysis of nitriles in water[J]. Green Chem., 2016,18:4865-4870. doi: 10.1039/C6GC01565D
Bacon R.G.R., Hill H.A.O.. Metal ions and complexes in organic reactions. Part I. Substitution reactions between aryl halides and cuprous salts in organic solvents[J]. J. Chem. Soc., 1964:1097-1107. doi: 10.1039/jr9640001097
Benz P., Muntwyler R., Wohlgemuth R.. Chemoenzymatic synthesis of chiral carboxylic acids via nitriles[J]. J. Chem. Technol. Biotechnol., 2007,82:1087-1098. doi: 10.1002/(ISSN)1097-4660
Ellis G.P., Alexander T.M.R.. Cyanation of aromatic halides[J]. Chem. Rev., 1987,87:779-794. doi: 10.1021/cr00080a006
Grasselli R.K.. Advances and future trends in selective oxidation and ammoxidation catalysis[J]. Catal. Today, 1999,49:141-153. doi: 10.1016/S0920-5861(98)00418-0
Yamaguchi H., Fujiwara Y., Ogasawara M.. A tungsten-tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles[J]. Angew. Chem. Int. Ed., 2007,46:3922-3925. doi: 10.1002/(ISSN)1521-3773
Ishihara K., Furuya Y., Yamamoto H.. Rhenium (Ⅶ) oxo complexes as extremely active catalysts in the dehydration of primary amides and aldoximes to nitriles[J]. Angew. Chem. Int. Ed., 2002,41:2983-2986. doi: 10.1002/1521-3773(20020816)41:16<2983::AID-ANIE2983>3.0.CO;2-X
Zhu Y., Li L., Shen Z.. Cu-catalyzed cyanation of arylboronic acids with acetonitrile:a dual role of TEMPO[J]. Chem. A Eur. J., 2016,21:13246-13252.
Mondal B., Acharyya K., Howlader P., Mukherjee P.S.. Molecular cage impregnated palladium nanoparticles:efficient additive-free heterogeneous catalysts for cyanation of aryl halides[J]. J. Am. Chem. Soc., 2016,138:1709-1716. doi: 10.1021/jacs.5b13307
Ryland B.L., Stahl S.S.. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems[J]. Angew. Chem. Int. Ed., 2014,53:8824-8838. doi: 10.1002/anie.201403110
Zhang J., Wang Z., Wang Y.. A metal-free catalytic system for the oxidation of benzylic methylenes and primary amines under solvent-free conditions[J]. Green Chem., 2009,11:1973-1978. doi: 10.1039/b919346b
Bagherzade G., Zali A., Shokrolahi A.. Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc[J]. Chin. Chem. Lett., 2015,26:603-606. doi: 10.1016/j.cclet.2015.01.009
Bernskoetter W.H., Brookhart M.. Kinetics and mechanism of iridiumcatalyzed dehydrogenation of primary amines to nitriles[J]. Organometallics, 2008,27:2036-2045. doi: 10.1021/om701148t
Tseng K.N.T., Rizzi A.M., Szymczak N.K.. Oxidant-free conversion of primary amines to nitriles[J]. J. Am. Chem. Soc., 2013,135:16352-16355. doi: 10.1021/ja409223a
Damodara D., Arundhathi R., Likhar P.R.. Copper nanoparticles from copper aluminum hydrotalcite:an efficient catalyst for acceptor-and oxidant-free dehydrogenation of amines and alcohols[J]. Adv. Synth. Catal., 2014,356:189-198. doi: 10.1002/adsc.201300453
Kametani T., Takahashi K., Ohsawa T., Ihara M.. Oxidation of amines to nitriles or aldehydes using copper (Ⅰ) chloride[J]. Synthesis, 1977245.
Corker E.C., Mentzel U.V., Mielby J., Riisager A., Fehrmann R.. An alternative pathway for production of acetonitrile:ruthenium catalysed aerobic dehydrogenation of ethylamine[J]. Green Chem., 2013,15:928-933. doi: 10.1039/c3gc36513a
Pavel O.D., Goodrich P., Cristian L.. Direct oxidation of amines to nitriles in the presence of ruthenium-terpyridyl complex immobilized on ILs/SILP[J]. Catal. Sci. Technol., 2015,5:2696-2704. doi: 10.1039/C5CY00011D
Ovoshchnikov D.S., Donoeva B.G., Golovko V.B.. Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO2[J]. ACS Catal., 2015,5:34-38. doi: 10.1021/cs501186n
Hammond C., Schuemperli M.T., Hermans I.. Insights into the oxidative dehydrogenation of amines with nanoparticulate iridium oxide[J]. Chem. Eur. J., 2013,19:13193-13198. doi: 10.1002/chem.v19.39
Mahadevan V., J.L. DuBois, Hedman B., Hodgson K.O., Stack T.D.P.. Exogenous substrate reactivity with a [Cu(Ⅲ)2O2]2+ core:structural implications[J]. J. Am. Chem. Soc., 1999,121:5583-5584. doi: 10.1021/ja983635v
Mirica L.M., Rudd D.J., Vance M.A.. μ-η2:η2-Peroxodicopper (Ⅱ) complex with a secondary diamine ligand:a functional model of tyrosinase[J]. J. Am. Chem. Soc., 2006,128:2654-2665. doi: 10.1021/ja056740v
Wang J., Lu S., Cao X., Gu H.. Common metal of copper (0) as an efficient catalyst for preparation of nitriles and imines by controlling additives[J]. Chem. Commun., 2014,50:5637-5640. doi: 10.1039/c4cc01389a
Kim J., Stahl S.S.. Cu/Nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature[J]. ACS Catal., 2013,3:1652-1656. doi: 10.1021/cs400360e
Varyani M., Khatri P.K., Jain S.L.. Amino acid derived ionic liquid supported iron schiff base catalyzed greener approach for the aerobic oxidation of amines to nitriles[J]. Tetrahedron Lett., 2016,57:723-727. doi: 10.1016/j.tetlet.2015.12.082
Jagadeesh R.V., Junge H., Beller M.. Nanorust-catalyzed benign oxidation of amines for selective synthesis of nitriles[J]. ChemSusChem, 2015,8:92-96. doi: 10.1002/cssc.201402613
Ye J.Q., Zhang Z.L., Zha Z.G., Wang Z.Y.. A green and efficient access to aryl nitriles via an electrochemical anodic oxidation[J]. Chin. Chem. Lett., 2014,25:1112-1114. doi: 10.1016/j.cclet.2014.04.024
Ma X., Su C., Xu Q.. N-Alkylation by hydrogen autotransfer reactions in hydrogen transfer reactions:reductions and beyond (Eds. Guillena G., D. J. Ramón)[J]. Top. Curr. Chem., 2016,374(27):1-74.
Xu Q., Li Q.. Recent advances of transition metal-catalyzed aerobic dehydrative reactions of alcohols and amines and related researches[J]. Chin. J. Org. Chem., 2013,33:18-35. doi: 10.6023/cjoc201208016
Jiang L., Jin L., Tian H.. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions[J]. Chem. Commun., 2011,47:10833-10835. doi: 10.1039/c1cc14242a
Tian H., Yu X., Li Q., Wang J., Xu Q.. General, green, and scalable synthesis of imines from alcohols and amines by a mild and efficient copper-catalyzed aerobic oxidative reaction in open air at room temperature[J]. Adv. Synth. Catal., 2012,354:2671-2677. doi: 10.1002/adsc.v354.14/15
Zhang E., Tian H., Xu S., Yu X., Xu Q.. Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air[J]. Org. Lett., 2013,15:2704-2707. doi: 10.1021/ol4010118
Huang B., Tian H., Lin S.. Cu (Ⅰ)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions[J]. Tetrahedron Lett., 2013,54:2861-2864. doi: 10.1016/j.tetlet.2013.03.098
Liu J., Wang C., Ma X.. Simple synthesis of benzazoles by substratepromoted CuI-catalyzed aerobic oxidative cyclocondensation of o-thio/amino/hydroxyanilines and amines under air[J]. Catal. Lett., 2016,146:2139-2148. doi: 10.1007/s10562-016-1818-2
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Wen-Tao Ouyang , Jun Jiang , Yan-Fang Jiang , Ting Li , Yuan-Yuan Liu , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866