Citation: Xue Zai-Kun, Fu Nian-Kai, Luo San-Zhong. Asymmetric hydroazidation of α-substituted vinyl ketones catalyzed by chiral primary amine[J]. Chinese Chemical Letters, ;2017, 28(5): 1083-1086. doi: 10.1016/j.cclet.2017.01.014 shu

Asymmetric hydroazidation of α-substituted vinyl ketones catalyzed by chiral primary amine

  • Corresponding author: Luo San-Zhong, luosz@iccas.ac.cn
  • Received Date: 12 November 2016
    Revised Date: 30 December 2016
    Accepted Date: 16 January 2017
    Available Online: 22 May 2017

Figures(2)

  • We report herein the first example of asymmetric hydroazidation of α-substituted vinyl ketones by using chiral primary amines as the catalysts. A simple chiral primary-tertiary diamine catalyst derived from L-phenylalanine was found to readily promote this aza-Michael addition reaction with enamine protonation as the key stereogenic step, thus enabling the effective synthesis of α-chiral β-azido ketones with good yields and moderate enantioselectivities.
  • 加载中
    1. [1]

      (a) S. Brase, C. Gil, K. Knepper, et al. , Organic azides: an exploding diversity of a unique class of compounds, Angew. Chem. Int. Ed. 44(2005) 5188-5240;
      (b) M. Minozzi, D. Nanni, P. Spagnolo, From azides to nitrogen-centered radicals: applications of azide radical chemistry to organic synthesis, Chem. Eur. J. 15(2009) 7830-7840;
      (c) D. Lubriks, I. Sokolovs, E. Suna, Indirect C-H azidation of heterocycles via copper-catalyzed regioselective fragmentation of unsymmetrical λ3-iodanes, J. Am. Chem. Soc. 134(2012) 15436-15442;
      (d) C. Tang, N. Jiao, Copper-catalyzed C-H azidation of anilines under mild conditions, J. Am. Chem. Soc. 134(2012) 18924-18927;
      (e) Q. H. Deng, T. Bleith, H. Wadepohl, L. H. Gade, Enantioselective iron-catalyzed azidation of β-keto esters and oxindoles, J. Am. Chem. Soc. 135(2013) 5356-5359;
      (f) F. Xie, Z. Qi, X. Li, Rhodium(Ⅲ)-catalyzed azidation and nitration of arenes by C-H activation, Angew. Chem. Int. Ed. 52(2013) 11862-11866;
      (g) P. Klahn, H. Erhardt, A. Kotthaus, et al. , The synthesis of α-azidoesters and geminal triazides, Angew. Chem. Int. Ed. 53(2014) 7913-7919;
      (h) H. Yin, T. Wang, N. Jiao, Copper-catalyzed oxoazidation and alkoxyazidation of indoles, Org. Lett. 16(2014) 2302-2305;
      (i) Y. Fan, W. Wan, G. Ma, et al. , Room-temperature Cu(Ⅱ)-catalyzed aromatic C-H azidation for the synthesis of ortho-azido anilines with excellent regioselectivity, Chem. Commun. 50(2014) 5733-5736;
      (j) A. Sharma, J. F. Hartwig, Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization, Nature 517(2015) 600-604;
      (k) X. Huang, T. M. Bergsten, J. T. Groves, Manganese-catalyzed late-stage aliphatic C-H azidation, J. Am. Chem. Soc. 137(2015) 5300-5303;
      (l) X. Huang, J. T. Groves, Taming azide radicals for catalytic C-H azidation, ACS Catal. 6(2016) 751-759;
      (m) W. E. Fristad, T. A. Brandvold, J. R. Peterson, et al. , Conversion of alkenes to 1, 2-diazides and 1, 2-diamines, J. Org. Chem. 50(1985) 3647-3649;
      (n) Y. A. Yuan, D. F. Lu, Y. R. Chen, et al. , Iron-catalyzed direct diazidation for a broad range of olefins, Angew. Chem. Int. Ed. 55(2016) 534-538;
      (o) B. Zhang, A. Studer, Stereoselective radical azidooxygenation of alkenes, Org. Lett. 15(2013) 4548-4551;
      (p) L. Zhu, H. Yu, Z. Xu, et al. , Copper-catalyzed oxyazidation of unactivated alkenes: a facile synthesis of isoxazolines featuring an azido substituent, Org. Lett. 16(2014) 1562-1565;
      (q) H. C. Kolb, M. G. Finn, K. B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40(2001) 2004-2021;
      (r) V. V. Rostovtsev, L. G. Green, V. V. Fokin, et al. , A stepwise huisgen cycloaddition process: copper(Ⅰ)-catalyzed regioselective ligation of azides and terminal alkynes, Angew. Chem. Int. Ed. 41(2002) 2596-2599;
      (s) P. Wu, A. K. Feldman, A. K. Nugent, et al. , Efficiency and fidelity in a clickchemistry route to triazole dendrimers by the copper(Ⅰ)-catalyzed ligation of azides and alkynes, Angew. Chem. Int. Ed. 43(2004) 3928-3932.

    2. [2]

      (a) D. Thirumurugan, Click chemistry for drug development and diverse chemical-biology applications, Chem. Rev 113(2013) 4905-4979;
      (b) M. Grammel, H. C. Hang, Chemical reporters for biological discovery, Nat. Chem. Biol. 9(2013) 475-484;
      (c) C. J. Hawker, V. V. Fokin, M. G. Finn, et al. , Bringing efficiency to materials synthesis: the philosophy of click chemistry, Aust. J. Chem. 60(2007) 381-383;
      (d) C. Chu, R. Liu, Application of click chemistry on preparation of separation materials for liquid chromatography, Chem. Soc. Rev. 40(2011) 2177-2188;
      (e) W. H. Binder, R. Sachsenhofer, 'Click' chemistry in polymer and materials science, Macromol. Rapid Commun. 28(2007) 15-54;
      (f) C. Barner-Kowollik, F. E. D. Prez, P. Espeel, et al. , Clicking polymers or just efficient linking: what is the difference? Angew. Chem. Int. Ed. 50(2011) 60-62.

    3. [3]

      (a) J. Wang, P. Li, P. Y. Choy, et al. , Advances and applications in organocatalytic asymmetric aza-Michael addition, ChemCatChem 4(2012) 917-925;
      (b) D. Enders, C. Wang, J. X. Liebich, Organocatalytic asymmetric aza-Michael additions, Chem. Eur. J. 15(2009) 11058-11076;
      (c) P. R. Krishna, A. Sreeshailam, R. Srinivas, Tetrahedron 65(2009) 9657-9672;
      (d) L. W. Xu, C. G. Xia, A catalytic enantioselective aza-Michael reaction: novel protocols for asymmetric synthesis of β-amino carbonyl compounds, Eur. J. Org. Chem. (2005) 633-639.

    4. [4]

      (a) D. C. Cole, Recent stereoselective synthetic approaches to β-amino acids, Tetrahedron 50(1994) 9517-9582;
      (b) M. Liu, M. P. Sibi, Recent advances in the stereoselective synthesis of β-amino acids, Tetrahedron 58(2002) 7991-8035;
      (c) J. A. Ma, Recent developments in the catalyticasymmetric synthesis of α-and β-amino acids, Angew. Chem. Int. Ed. 42(2003) 4290-4299;
      (d) B. Weiner, W. Szymanski, D. B. Janssen, et al. , Recent advances in the catalytic asymmetric synthesis of β-amino acids, Chem. Soc. Rev. 39(2010) 1656-1691.

    5. [5]

      (a) H. X. Ding, K. K. C. Liu, S. M. Sakya, et al. , Synthetic approaches to the 2011 new drugs, Bioorg. Med. Chem. 21(2013) 2795-2825;
      (b) K. K. C. Liu, S. M. Sakya, C. J. O'Donnell, et al. , Synthetic aroaches to the 2009 new drugs, Bioorg. Med. Chem. 19(2011) 1136-1154;
      (d) A. Kumar, I. Ahmad, B. S. Chhikara, et al. , Synthesis of 3-phenylpyrazolopyrimidine-1, 2, 3-triazole conjugates and evaluation of their Src kinase inhibitory and anticancer activities, Bioorg. Med. Chem. Lett. 21(2017) 1342-1346;
      (e) K. K. C. Liu, S. M. Sakya, C. J. O'Donnell, et al. , Synthetic approaches tothe 2009 new drugs, Bioorg. Med. Chem. 19(2011) 1136-1154;
      (f) A. Kumar, I. Ahmad, B. S. Chhikara, et al. , Synthesis of 3-phenylpyrazolopyrimidine-1, 2, 3-triazole conjugates and evaluation of their Src kinase inhibitory and anticancer activities, Bioorg. Med. Chem. Lett. 21(2011) 1342-1346.

    6. [6]

      (a) D. J. Guerin, T. E. Horstmann, S. J. Miller, Amine-catalyzed addition of azide ion to a, β-unsaturated carbonyl compounds, Org. Lett. 1(1999) 1107-1109;
      (b) J. K. Myers, E. N. Jacobsen, Asymmetric synthesis of β-amino acid derivatives via catalytic conjugate addition of hydrazoic acid to unsaturated imides, J. Am. Chem. Soc. 121(1999) 8959-8960;
      (c) T. E. Horstmann, D. J. Guerin, S. J. Miller, Asymmetric conjugate addition of azide to a, β-unsaturated carbonyl compounds catalyzed by simple peptides, Angew. Chem. Int. Ed. 39(2000) 3635-3638;
      (d) D. J. Guerin, S. J. Miller, Asymmetric azidation-cycloaddition with open-chain peptide-based catalysts. A sequential enantioselective route to triazoles, J. Am. Chem. Soc. 124(2002) 2134-2136;
      (e) L. W. Xu, L. Li, C. G. Xia, et al. , The first ionic liquids promoted conjugate addition of azide ion to a, β-unsaturated carbonyl compounds, Tetrahedron Lett. 45(2004) 1219-1221;
      (f) M. S. Taylor, D. N. Zalatan, A. M. Lerchner, et al. , Highly enantioselective conjugate additions to a, β-unsaturated ketones catalyzed by a (Salen)Al complex, J. Am. Chem. Soc. 127(2005) 1313-1317;
      (g) M. Nielsen, W. Zhuang, K. A. Jørgensen, Asymmetric conjugate addition of azide to a, β-unsaturated nitro compounds catalyzed by cinchona alkaloids, Tetrahedron 63(2007) 5849-5854;
      (h) T. Bellavista, S. Meninno, A. Lattanzi, et al. , Asymmetric hydroazidation of nitroalkenes promoted by a secondary amine-thiourea catalyst, Adv. Synth. Catal. 357(2015) 3365-3373;
      (i) Z. Liu, J. Liu, L. Zhang, et al. , Silver(Ⅰ)-catalyzed hydroazidation of ethynyl carbinols: synthesis of 2-azidoallyl alcohols, Angew. Chem. Int. Ed. 53(2014) 5305-5309;
      (j) X. Sun, X. Li, S. Song, et al. , Mn-catalyzed highly efficient aerobic oxidative hydroxyazidation of olefins: a direct approach to β-azido alcohols, J. Am. Chem. Soc. 137(2015) 6059-6060.

    7. [7]

      P.K. Shyam, H.Y. Jang. Metal-organocatalytic tandem azide addition/oxyamination of aldehydes for the enantioselective synthesis of β-amino α-hydroxy esters[J]. Eur. J. Org. Chem., 2014:1817-1822.  

    8. [8]

      (a) L. Zhang, S. Luo, Bio-inspired chiral primary amine catalysis, Synlett 23(2012) 1575-1589;
      (b) L. Zhang, N. Fu, S. Luo, Pushing the limits of aminocatalysis: enantioselective transformations of α-branched β-ketocarbonyls and vinyl ketones by chiral primary amines, Acc. Chem. Res. 48(2015) 986-997;
      (c) J. Li, X. Li, P. Zhou, et al. , Chiral primary amine-polyoxometalate acid hybrids as asymmetric recoverable iminium-based catalysts, Eur. J. Org. Chem. (2009) 4486-4493;
      (d) J. Li, N. Fu, L. Zhang, et al. , Chiral primary amine catalyzed asymmetric epoxidation of α-substituted acroleins, Eur. J. Org. Chem. (2010) 6840-6849;
      (e) N. Fu, L. Zhang, J. Li, et al. , Chiral primary amine catalyzed enantioselective protonation via an enamine intermediate, Angew. Chem. Int. Ed. 50(2011) 11451-11455;
      (f) N. Fu, L. Zhang, S. Luo, et al. , Chiral primary-amine-catalyzed conjugate addition to α-substituted vinyl ketones/aldehydes: divergent stereocontrol modes on enamine, Chem. Eur. J. 19(2013) 15669-15681;
      (g) N. Fu, L. Zhang, S. Luo, et al. , Chiral primary amine catalysed asymmetric conjugate addition of azoles to α-substituted vinyl ketones, Org. Chem. Front. 1(2014) 68-72;
      (h) N. Fu, L. Zhang, S. Luo, et al. , Asymmetric sulfα-Michael addition to α-substituted vinyl ketones catalyzed by chiral primary amine, Org. Lett. 16(2014) 4626-4629;
      (i) N. Fu, L. Zhang, S. Luo, Chiral primary amine catalyzed asymmetric Michael addition of malononitrile to α-substituted vinyl ketone, Org. Lett. 17(2015) 382-385;
      (j) N. Fu, Y. Guo, L. Zhang, et al. , Chiral primary amine catalyzed asymmetric tandem reduction-Michael addition-protonation reaction between alkylidene meldrum's acid and α-substituted vinyl ketones, Synthesis 47(2015) 2207-2216.

    9. [9]

      (a) A. Yanagisawa, H. Yamamoto, Protonation of enolates, in: E. N. Jacobsen, A. Pfaltz, H. Yamamoto (Eds. ), Comprehensive asymmetric catalysis, vol. Ⅲ, Springer, Heidelberg, 1999, pp. 1295-1306;
      (b) L. Duhamel, P. Duhamel, J. C. Plaquevent, Enantioselective protonations: fundamental insights and new concepts, Tetrahedron: Asymmetry 15(2004) 3653-3691;
      (c) C. Fehr, Enantioselective protonation of enolates and enols, Angew. Chem. Int. Ed. 35(1996) 2566-2587;
      (d) J. Blanchet, J. Baudoux, M. Amere, et al. , Asymmetric malonic and acetoacetic acid syntheses-a century of enantioselective decarboxylative protonations, Eur. J. Org. Chem. (2008) 5493-5506;
      (e) J. T. Mohr, A. Y. Hong, B. M. Stoltz, Enantioselective protonation, Nat. Chem. 1(2009) 359-369;
      (f) S. Oudeyer, J. F. Briere, V. Levacher, Progress in catalytic asymmetric protonation, Eur. J. Org. Chem. (2014) 6103-6119.

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    3. [3]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    4. [4]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    5. [5]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    6. [6]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    9. [9]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    10. [10]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    11. [11]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    12. [12]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    17. [17]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    18. [18]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    19. [19]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    20. [20]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

Metrics
  • PDF Downloads(4)
  • Abstract views(671)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return