Citation: Wei Jing-Ping, Chen Xiao-Lan, Wang Xiao-Yong, Li Jing-Chao, Shi Sai-Ge, Liu Gang, Zheng Nan-Feng. Polyethylene glycol phospholipids encapsulated silicon 2, 3-naphthalocyanine dihydroxide nanoparticles (SiNcOH-DSPEPEG(NH2) NPs) for single NIR laser induced cancer combination therapy[J]. Chinese Chemical Letters, ;2017, 28(6): 1290-1299. doi: 10.1016/j.cclet.2017.01.007 shu

Polyethylene glycol phospholipids encapsulated silicon 2, 3-naphthalocyanine dihydroxide nanoparticles (SiNcOH-DSPEPEG(NH2) NPs) for single NIR laser induced cancer combination therapy

Figures(9)

  • Currently, the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a powerful technique for cancer treatment. However, most examples of combined PTT and PDT reported use multi-component nanocomposites under excitation of separate wavelength, resulting in complex treatment process. In this work, a novel theranostic nanoplatform (SiNcOH-DSPE-PEG(NH2) NPs) has been successfully developed by coating silicon 2, 3-naphthalocyanine dihydroxide (SiNcOH) with DSPE-PEG and DSPE-PEG-NH2 for photoacoustic (PA) imaging-guided PTT and PDT tumor ablation for the first time. The as-prepared single-agent SiNcOH-DSPE-PEG(NH2) NPs not only have good water solubility and biocompatibility, but also exhibit high photothermal conversion efficiency and singlet oxygen generation capability upon 808 nm NIR laser irradiation. In addition, owing to their high absorption at NIR region, the SiNcOH-DSPE-PEG(NH2) NPs can also be employed as an effective diagnostic nanoagent for photoacoustic (PA) imaging. In vitro and in vivo experimental results clearly indicated that the simultaneously combined PTT and PDT under the guidance of PA imaging with single NIR laser excitation can effectively kill cancer cells or eradicate tumor tissues. Taking facile synthesis and high efficiency in cancer treatment by SiNcOH-DSPE-PEG(NH2) NPs into consideration, our study provides a promising strategy to realize molecular imaging-guided combination therapy.
  • 加载中
    1. [1]

      Liu H., Chen D., Li L.. Multifunctional gold nanoshells on silica nanorattles:a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity[J]. Angew. Chem. Int. Ed., 2011,50:891-895. doi: 10.1002/anie.201002820

    2. [2]

      Fang W., Yang J., Gong J.. Photo-and pH-Triggered Release of Anticancer Drugs from Mesoporous Silica-Coated Pd@Ag Nanoparticles[J]. Adv. Funct. Mater., 2012,22:842-848. doi: 10.1002/adfm.201101960

    3. [3]

      Wang C., Xu H., Liang C.. Iron oxide@polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect[J]. ACS Nano, 2013,7:6782-6795. doi: 10.1021/nn4017179

    4. [4]

      Zheng M., Yue C., Ma Y.. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy[J]. ACS Nano, 2013,7:2056-2067. doi: 10.1021/nn400334y

    5. [5]

      Tang S., Chen M., Zheng N.. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer[J]. Nano Res., 2014,8:165-174.  

    6. [6]

      Shi S., Chen X., Wei J.. Platinum(ⅳ) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy[J]. Nanoscale, 2016,8:5706-5713. doi: 10.1039/C5NR09120A

    7. [7]

      Miao W., Shim G., Lee S.. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer[J]. Biomaterials, 2013,34:3402-3410. doi: 10.1016/j.biomaterials.2013.01.010

    8. [8]

      Zhang M., Murakami T., Ajima K.. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy[J]. Proc. Natl. Acad. Sci. U. S. A., 2008,105:14773-14778. doi: 10.1073/pnas.0801349105

    9. [9]

      Jang B., Park J.-Y., Tung C.-H.. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo[J]. ACS Nano, 2011,5:1086-1094. doi: 10.1021/nn102722z

    10. [10]

      Wang S., Huang P., Nie L.. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars[J]. Adv. Mater., 2013,25:3055-3061. doi: 10.1002/adma.v25.22

    11. [11]

      Zhao Z.X., Huang Y.Z., Shi S.G.. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy[J]. Nanotechnology, 2014,25285701. doi: 10.1088/0957-4484/25/28/285701

    12. [12]

      Cheng L., Wang C., Feng L.. Functional nanomaterials for phototherapies of cancer[J]. Chem. Rev., 2014,114:10869-10939. doi: 10.1021/cr400532z

    13. [13]

      Sun M., Xu L., Ma W.. Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination Phototherapy[J]. Adv. Mater., 2016,28:898-904. doi: 10.1002/adma.v28.5

    14. [14]

      Tian B., Wang C., Zhang S.. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano, 2011,5:7000-7009. doi: 10.1021/nn201560b

    15. [15]

      Lin T.Y., Guo W., Long Q.. HSP90 Inhibitor encapsulated phototheranostic nanoparticles for synergistic combination cancer therapy[J]. Theranostics, 2016,6:1324-1335. doi: 10.7150/thno.14882

    16. [16]

      Bonnett R.. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J]. Chem. Soc. Rev., 1995,24:19-33. doi: 10.1039/cs9952400019

    17. [17]

      Huang X., El-Sayed I.H., Qian W.. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. J. Am. Chem. Soc., 2006,128:2115-2120. doi: 10.1021/ja057254a

    18. [18]

      Konan Y.N., Gurny R., Allémann E.. State of the art in the delivery of photosensitizers for photodynamic therapy[J]. J. Photochem. Photobio. B, 2002,66:89-106. doi: 10.1016/S1011-1344(01)00267-6

    19. [19]

      Mou J., Lin T., Huang F.. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT[J]. Biomaterials, 2016,84:13-24. doi: 10.1016/j.biomaterials.2016.01.009

    20. [20]

      Gao L., Fei J., Zhao J.. Hypocrellin-loaded gold nanocages with high twophoton efficiency for photothermal/photodynamic cancer therapy in vitro[J]. ACS Nano, 2012,6:8030-8040. doi: 10.1021/nn302634m

    21. [21]

      Kah J.C., Wan R.C., Wong K.Y.. Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy:an in vitro study[J]. Laser. Surg. Med., 2008,40:584-589. doi: 10.1002/lsm.v40:8

    22. [22]

      Kuo W.S., Chang Y.T., Cho K.C.. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy[J]. Biomaterials, 2012,33:3270-3278. doi: 10.1016/j.biomaterials.2012.01.035

    23. [23]

      Shi S., Zhu X., Zhao Z.. Photothermally enhanced photodynamic therapy based on mesoporous Pd@Ag@mSiO2 nanocarriers[J]. J. Mater. Chem. B, 2013,11133. doi: 10.1039/c2tb00376g

    24. [24]

      Zhao Z., Shi S., Huang Y.. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser[J]. ACS Appl. Mater. Interface, 2014,6:8878-8885. doi: 10.1021/am501608c

    25. [25]

      Huang Y., Chen X., Shi S.. Effect of glutathione on in vivo biodistribution and clearance of surface-modified small Pd nanosheets[J]. Sci. China Chem., 2015,58:1753-1758.  

    26. [26]

      Gollavelli G., Ling Y.C.. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells[J]. Biomaterials, 2014,35:4499-4507. doi: 10.1016/j.biomaterials.2014.02.011

    27. [27]

      Zhang P., Huang H., Huang J.. Noncovalent ruthenium(Ⅱ) complexessingle-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation[J]. ACS Appl. Mater. Interfaces, 2015,7:23278-23290. doi: 10.1021/acsami.5b07510

    28. [28]

      Liu T., Wang C., Cui W.. Combined photothermal and photodynamic therapy delivered by PEGylated MoS 2 nanosheets[J]. Nanoscale, 2014,6:11219-11225. doi: 10.1039/C4NR03753G

    29. [29]

      Yong Y., Zhou L., Gu Z.. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells[J]. Nanoscale, 2014,610394. doi: 10.1039/C4NR02453B

    30. [30]

      Tan X., Pang X., Lei M.. An efficient dual-loaded multifunctional nanocarrier for combined photothermal and photodynamic therapy based on copper sulfide and chlorin e6[J]. Int. J. Pharm., 2016,503:220-228. doi: 10.1016/j.ijpharm.2016.03.019

    31. [31]

      Wang S., Riedinger A., Li H.. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015,9:1788-1800. doi: 10.1021/nn506687t

    32. [32]

      Han L., Zhang Y., Chen X.-W.. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy[J]. J. Mater. Chem. B, 2016,4:105-112.  

    33. [33]

      Huang Y., Lai Y., Shi S.. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy[J]. Chem. Asian. J., 2015,10:370-376. doi: 10.1002/asia.v10.2

    34. [34]

      Kim Y.K., Na H.K., Kim S.. One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy[J]. Small, 2015,11:2527-2535. doi: 10.1002/smll.v11.21

    35. [35]

      Crescenzi E., Varriale L., Iovino M.. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells[J]. Mol. Cancer. Ther., 2004,3:537-544.  

    36. [36]

      Wu L., Fang S., Shi S.. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study[J]. Biomacromolecules, 2013,14:3027-3033. doi: 10.1021/bm400839b

    37. [37]

      Taratula O., Schumann C., Duong T.. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy[J]. Nanoscale, 2015,7:3888-3902. doi: 10.1039/C4NR06050D

    38. [38]

      Lim C.K., Shin J., Lee Y.D.. Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer[J]. Theranostics, 2012,2:871-879. doi: 10.7150/thno.4133

    39. [39]

      Karan S., Mallik B.. Templating effects and optical characterization of copper (Ⅱ) phthalocyanine nanocrystallites thin film:nanoparticles, nanoflowers, nanocabbages, and nanoribbons[J]. J. Phys. Chem. C., 2007,111:7352-7365. doi: 10.1021/jp070302o

    40. [40]

      Triesscheijn M., Baas P., Schellens J.H.. Photodynamic therapy in oncology[J]. Oncologist, 2006,11:1034-1044. doi: 10.1634/theoncologist.11-9-1034

    41. [41]

      Mathew S., Murakami T., Nakatsuji H.. Exclusive photothermal heat generation by a gadolinium bis (naphthalocyanine) complex and inclusion into modified high-density lipoprotein nanocarriers for therapeutic applications[J]. ACS Nano, 2013,7:8908-8916. doi: 10.1021/nn403384k

    42. [42]

      Singh A.K., Hahn M.A., Gutwein L.G.. Multi-dye theranostic nanoparticle platform for bioimaging and cancer therapy[J]. Int. J. Nanomed., 2012,7:2739-2750.  

    43. [43]

      Jin Y., Ye F., Zeigler M.. Near-infrared fluorescent dye-doped semiconducting polymer dots[J]. ACS Nano, 2011,5:1468-1475. doi: 10.1021/nn103304m

    44. [44]

      Song L.. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment[J]. Int. J. Nanomed., 2007,2:767-774.  

    45. [45]

      Tian Q., Jiang F., Zou R.. Hydrophilic Cu9S5 nanocrystals:A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011,5:9761-9771. doi: 10.1021/nn203293t

    46. [46]

      Roper D.K., Ahn W., Hoepfner M.. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles[J]. J. Phys. Chem. C, 2007,111:3636-3641. doi: 10.1021/jp064341w

    47. [47]

      Ku G., Zhou M., Song S.. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064nm[J]. ACS Nano, 2012,6:7489-7496. doi: 10.1021/nn302782y

    48. [48]

      Li M., Yang X., Ren J.. Using grapheneoxide highnear-infrared absorbance for photothermal treatment of Alzheimer's disease[J]. Adv. Mater., 2012,24:1722-1728. doi: 10.1002/adma.201104864

    49. [49]

      Kim C., Favazza C., Wang L.V.. In vivo photoacoustic tomography of chemicals:high-resolution functional and molecular optical imaging at new depths[J]. Chem. Rev., 2010,110:2756-2782. doi: 10.1021/cr900266s

    50. [50]

      Chen M., Tang S., Guo Z.. Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging CT imaging, and photothermal therapy[J]. Adv. Mater., 2014,26:8210-8216. doi: 10.1002/adma.201404013

  • 加载中
    1. [1]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    2. [2]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    3. [3]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    4. [4]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    5. [5]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    6. [6]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    7. [7]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    8. [8]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    9. [9]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    10. [10]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    11. [11]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    12. [12]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    13. [13]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    16. [16]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    17. [17]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    18. [18]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    19. [19]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    20. [20]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

Metrics
  • PDF Downloads(8)
  • Abstract views(3621)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return