Citation: Huang Zhi-Xiang, Xie Qin, Guo Qiu-Ping, Wang Ke-Min, Meng Xiang-Xian, Yuan Bao-Yin, Wan Jun, Chen Yuan-Yuan. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues[J]. Chinese Chemical Letters, ;2017, 28(6): 1252-1257. doi: 10.1016/j.cclet.2017.01.002 shu

DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues

  • Corresponding author: Guo Qiu-Ping, guoqping@126.com Wang Ke-Min, kmwang@hnu.edu.cn
  • Received Date: 13 October 2016
    Revised Date: 13 December 2016
    Accepted Date: 13 December 2016
    Available Online: 7 June 2017

Figures(4)

  • Prostate cancer is the most common malignancy in men lack of efficient early diagnosis and therapeutics, calling for effective molecular probes. Herein, we performed cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) to obtain specific recognition of human prostate cancer cells PC-3M. Four aptamers were successfully obtained that can bind to target cells with high affinity and specificity. A 51-nt truncated sequence named Xq-2-C1 was identified after further elaborative analysis on the secondary structure. More importantly, the achieved aptamer Xq-2-C1 not only demonstrated excellent specific to target cells, but also revealed specific recognition to clinical prostate cancer tissue. The tissue imaging results showed that Xq-2-C1 had better recognition ratio for clinical prostate cancer tissue samples (85%) compared to the random sequence (9%). These results demonstrate that these newly generated aptamers would furnish potential applications in the early diagnosis and clinical treatment of prostate cancer.
  • 加载中
    1. [1]

      Ferlay J., Shin H.R., Bray F.. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J]. Int. J. Cancer, 2010,127:2893-2917. doi: 10.1002/ijc.v127:12

    2. [2]

      Carter H.B., Albertsen P.C., Barry M.J.. Early detection of prostate cancer:AUA guideline[J]. J. Urol., 2013,190:419-426. doi: 10.1016/j.juro.2013.04.119

    3. [3]

      Walsh A.L., Considine S.W., Thomas A.Z., Lynch T.H., Manecksha R.P.. Digital rectal examination in primary care is important for early detection of prostate cancer:a retrospective cohort analysis study[J]. Brit. J. Gen. Pract., 2014,64:e783-e787. doi: 10.3399/bjgp14X682861

    4. [4]

      Vargas H.A., Grimm J., Donati O.F., Sala E., Hricak H.. Molecular imaging of prostate cancer:translating molecular biology approaches into the clinical realm[J]. Eur. Radiol., 2015,25:1294-1302. doi: 10.1007/s00330-014-3539-5

    5. [5]

      Glybochko P.V., Zezerov E.G., Glukhov A.I.. Telomerase as a tumor marker in diagnosis of prostatic intraepithelial neoplasia and prostate cancer[J]. Prostate, 2014,74:1043-1051. doi: 10.1002/pros.v74.10

    6. [6]

      Ahn B., Lee H., Kim Y., Kim J.. Robotic system with sweeping palpation and needle biopsy for prostate cancer diagnosis[J]. Int. J. Med. Robot. Comput. Assist. Surg., 2014,10:356-367. doi: 10.1002/rcs.v10.3

    7. [7]

      Börgermann C., Loertzer H., Hammerer P.. Probleme, zielsetzung und inhalt der früherkennung beim prostatakarzinom[J]. Urologe, 2010,49:181-189. doi: 10.1007/s00120-010-2234-7

    8. [8]

      Cuzick J., Thorat M.A., Andriole G.. Prevention and early detection of prostate cancer[J]. Lancet Oncol., 2014,15:e484-e492. doi: 10.1016/S1470-2045(14)70211-6

    9. [9]

      Tuerk C., Gold L.. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990,249:505-510. doi: 10.1126/science.2200121

    10. [10]

      Hicke B.J., Marion C., Chang Y.F.. Tenascin-C aptamers areg enerated using tumor cells and purified protein[J]. J. Biol. Chem., 2001,276:48644-48654. doi: 10.1074/jbc.M104651200

    11. [11]

      Daniels D.A., Chen H., Hicke B.J., Swiderek K.M., Gold L.. A tenascin-C aptamer identified by tumor cell SELEX:systematic evolution of ligands by exponential enrichment[J]. Proc. Natl. Acad. Sci. U. S. A., 2003,100:15416-15421. doi: 10.1073/pnas.2136683100

    12. [12]

      Tang Z.W., Shangguan D.H., Wang K.M.. Selection of aptamers for molecular recognition and characterization of cancer cells[J]. Anal. Chem., 2007,79:4900-4907. doi: 10.1021/ac070189y

    13. [13]

      Sefah K., Tang Z.W., Shangguan D.H.. Molecular recognition of acute myeloid leukemia using aptamers[J]. Leukemia, 2009,23:235-244. doi: 10.1038/leu.2008.335

    14. [14]

      Chen H.W., Medley C.D., Sefah K.. Molecular recognition of small-cell lung cancer cells using aptamers[J]. ChemMedChem, 2008,3:991-1001. doi: 10.1002/(ISSN)1860-7187

    15. [15]

      Kunii T., Ogura S.I., Mie M., Kobatake E.. Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX[J]. Analyst, 2011,136:1310-1312. doi: 10.1039/c0an00962h

    16. [16]

      Zhao Z.L., Xu L., Shi X.L.. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells[J]. Analyst, 2009,134:1808-1814. doi: 10.1039/b904476k

    17. [17]

      Sefah K., Meng L., Lopez-Colon D.. DNA aptamers as molecular probes for colorectal cancer study[J]. PLoS One, 2010,5e14269. doi: 10.1371/journal.pone.0014269

    18. [18]

      Shangguan D.H., Meng L., Cao Z.C.. Identification of liver cancer-specific aptamers using whole live cells[J]. Anal. Chem., 2008,80:721-728. doi: 10.1021/ac701962v

    19. [19]

      Wang F.B., Rong Y., Fang M.. Recognition, capture of metastatic hepatocellular carcinoma cells using aptamer-conjugated quantum dots and magnetic particles[J]. Biomaterials, 2013,34:3816-3827. doi: 10.1016/j.biomaterials.2013.02.018

    20. [20]

      Hung L.Y., Wang C.H., Hsu K.F., Chou C.Y., Lee G.B.. An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells[J]. Lab Chip, 2014,14:4017-4028. doi: 10.1039/C4LC00587B

    21. [21]

      Wang Y.Y., Luo Y., Bing T.. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer[J]. PLoS One, 2014,9e100243. doi: 10.1371/journal.pone.0100243

    22. [22]

      Tan Y.Y., Guo Q.P., Xie Q.. Single-walled carbon nanotubes (SWCNTs)-assisted cell-systematic evolution of ligands by exponential enrichment (CellSELEX) for improving screening efficiency[J]. Anal. Chem., 2014,86:9466-9472. doi: 10.1021/ac502166b

    23. [23]

      Zhang X.J., Zhang J., Ma Y.Y.. A cell-based single-stranded DNA aptamer specifically targets gastric cancer[J]. Int. J. Biochem. Cell Biol., 2014,46:1-8. doi: 10.1016/j.biocel.2013.10.006

    24. [24]

      Cao H.Y., Yuan A.H., Chen W., Shi X.S., Miao Y.. A DNA aptamerwith high affinity and specificity for molecular recognition and targeting therapy of gastric cancer[J]. BMC Cancer, 2014,14699. doi: 10.1186/1471-2407-14-699

    25. [25]

      Ding F., Guo S., Xie M.. Diagnostic applications of gastric carcinoma cell aptamers in vitro and in vivo[J]. Talanta, 2015,134:30-36. doi: 10.1016/j.talanta.2014.09.036

    26. [26]

      Zhou J.H., Rossi J.J.. Cell-specific aptamer-mediated targeted drug delivery[J]. Oligonucleotides, 2011,21:1-10. doi: 10.1089/oli.2010.0264

    27. [27]

      Jeong S., Han S.R., Lee Y.J., Lee S.W.. Selection of RNA aptamers specific to active prostate-specific antigen[J]. Biotechnol. Lett., 2010,32:379-385. doi: 10.1007/s10529-009-0168-1

    28. [28]

      Yang D.K., Chen L.C., Lee M.Y., Hsu C.H., Chen C.S.. Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX[J]. Biosens. Bioelectron., 2014,62:106-112. doi: 10.1016/j.bios.2014.06.027

    29. [29]

      Cibiel A., Quang N.N., Gombert K.. From ugly duckling to swan:unexpected identification from cell-SELEX of an anti-annexin A2 aptamer targeting tumors[J]. PLoS One, 2014,9e87002. doi: 10.1371/journal.pone.0087002

    30. [30]

      Cerchia L., Ducongé F., Pestourie C.. Neutralizing aptamers from wholecell SELEX inhibit the RET receptor tyrosine kinase[J]. PLoS Biol., 2005,3e123. doi: 10.1371/journal.pbio.0030123

    31. [31]

      Bing T., Yang X.J., Mei H.C., Cao Z.H., Shangguan D.H.. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories[J]. Bioorg. Med. Chem., 2010,18:1798-1805. doi: 10.1016/j.bmc.2010.01.054

    32. [32]

      Bock L.C., Griffin L.C., Latham J.A., Vermaas E.H., Toole J.J.. Selection of singlestranded DNA molecules that bind and inhibit human thrombin[J]. Nature, 1992,355:564-566. doi: 10.1038/355564a0

    33. [33]

      Shangguan D.H., Tang Z.W., Mallikaratchy P., Xiao Z.Y., Tan W.H.. Optimization and modifications of aptamers selected from live cancer cell lines[J]. ChemBioChem, 2007,8:603-606. doi: 10.1002/(ISSN)1439-7633

    34. [34]

      Zuker M.. Mfold web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Res., 2003,31:3406-3415. doi: 10.1093/nar/gkg595

    35. [35]

      Moreira B.G., You Y., Behlke M.A., Owczarzy R.. Effects of fluorescent dyes quenchers, and dangling ends on DNA duplex stability[J]. Biochem. Biophys. Res. Commun., 2005,327:473-484. doi: 10.1016/j.bbrc.2004.12.035

    36. [36]

      Wan J., Ye L., Yang X.H.. Cell-SELEX based selection and optimization of DNA aptamers for specific recognition of human cholangiocarcinoma QBC-939 cells[J]. Analyst, 2015,140:5992-5997. doi: 10.1039/C5AN01055A

    37. [37]

      Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res., 1997,25:4876-4882. doi: 10.1093/nar/25.24.4876

    38. [38]

      Wu X.Q., Zhao Z.L., Bai H.R.. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition[J]. Theranostics, 2015,5:985-994. doi: 10.7150/thno.11938

  • 加载中
    1. [1]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    2. [2]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    3. [3]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    4. [4]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    5. [5]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    8. [8]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    9. [9]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    10. [10]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    11. [11]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    12. [12]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    13. [13]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    14. [14]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    15. [15]

      Xue ZhengJizhen XieXing ZhangWeiting SunHeyang ZhaoYantuan LiCheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545

    16. [16]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    17. [17]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    18. [18]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    19. [19]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    20. [20]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

Metrics
  • PDF Downloads(0)
  • Abstract views(763)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return