Citation: Jung Jong-Woon, Damodar Kongara, Kim Jin-Kyung, Jun Jong-Gab. First synthesis and in vitro biological assessment of isosideroxylin, 6, 8-dimethylgenistein and their analogues as nitric oxide production inhibition agents[J]. Chinese Chemical Letters, ;2017, 28(5): 1114-1118. doi: 10.1016/j.cclet.2016.12.041 shu

First synthesis and in vitro biological assessment of isosideroxylin, 6, 8-dimethylgenistein and their analogues as nitric oxide production inhibition agents

  • Corresponding author: Jun Jong-Gab, jgjun@hallym.ac.kr
  • Received Date: 31 October 2016
    Revised Date: 6 December 2016
    Accepted Date: 14 December 2016
    Available Online: 8 May 2017

Figures(4)

  • A modular and efficient synthesis of the biologically significant C-methylisoflavones isosideroxylin (1), 6, 8-dimethylgenistein (2) and their analogues (3-8) is established for the first time. The synthesis is realized in 7-8 steps in overall yields of 16%-24% from commercially inexpensive phloroglucinol and features a high yielding Vilsmeier-Haack reaction, Friedel-Crafts acylation, Gammill's protocol and Suzuki coupling as the pivotal transformations. Next, these compounds evaluated for their inhibitory potency on the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW-264.7 cells as an indicator of anti-inflammatory activity. The results showed that all the compounds decreased NO production in a dose-dependent manner without marked cytotoxicity and IC50 values are found in the range of 10.17-33.88 μmol/L. Of note, compounds 3 followed by 1, 7 and 8 show comparable inhibitory activity with positive control (N-monomethyl-L-arginine, L-NMMA).
  • 加载中
    1. [1]

      J.N. Fullerton, D.W. Gilroy. Resolution of inflammation:a new therapeutic frontier[J]. Nat. Rev. Drug Discov., 2016,15:551-567. doi: 10.1038/nrd.2016.39

    2. [2]

      C. Bogdan. Nitric oxide and the immune response[J]. Nat. Immunol., 2001,2:907-916. doi: 10.1038/ni1001-907

    3. [3]

      (a) A. J. Duncan, S. J. R. Heales, Nitric oxide and neurological disorders, Mol. Aspects Med. 26(2005) 67-96;
      (b) K. Bian, F. Murad, Nitric oxide (NO)-biogeneration, regulation, and relevance to human diseases, Front Biosci. 8(2003) d264-d278.

    4. [4]

      E.R. Gilbert, D. Liu. Anti-diabetic functions of soy isoflavone genistein:mechanisms underlying its effects on pancreatic b-cell function[J]. Food Funct., 2013,4:200-212. doi: 10.1039/C2FO30199G

    5. [5]

      (a) J. Yu, X. Bi, B. Yu, D. Chen, Isoflavones: anti-inflammatory benefit and possible caveats, Nutrients 8(2016) 361;
      (b) B. H. Kim, E. Y. Chung, B. -K. Min, et al. , Anti-inflammatory action of legume isoflavonoid sophoricoside through inhibition on cyclooxygenase-2 activity, Planta Med. 69(2003) 474-476.

    6. [6]

      (a) C. E. Rüfer, S. E. Kulling, Antioxidant activity of isoflavones and their major metabolites using different in vitro assays, J. Agric. Food Chem. 54(2006) 2926-2931;
      (b) C. H. Lee, L. Yang, J. Z. Xu, et al. , Relative antioxidant activity of soybean isoflavones and their glycosides, Food Chem. 90(2005) 735-741.

    7. [7]

      (a) S. Andres, K. Abraham, K. E. Appel, A. Lampen, Risks and benefits of dietary isoflavones for cancer, Crit. Rev. Toxicol. 41(2011) 463-506;
      (b) Y. Kwon, Effect of soy isoflavones on the growth of human breasttumors: findings from preclinical studies, Food Sci. Nutr. 2(2014) 613-622.

    8. [8]

      A. Andres, S.M. Donovan, M.S. Kuhlenschmidt. Soy isoflavones and virus infections[J]. J. Nutr. Biochem., 2009,20:563-569. doi: 10.1016/j.jnutbio.2009.04.004

    9. [9]

      R.P. Krämer, H. Hindorf, H.C. Jha. Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives[J]. Phytochemistry, 1984,23:2203-2205. doi: 10.1016/S0031-9422(00)80520-8

    10. [10]

      (a) C. Morel, F. R. Stermitz, G. Tegos, K. Lewis, Isoflavones as potentiators of antibacterial activity, J. Agric. Food Chem. 51(2003) 5677-5679;
      (b) M. Sato, H. Tanaka, N. Tani, et al. , Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus, Lett. Appl. Microbiol. 43(2006) 243-248.

    11. [11]

      S.D. Varma, I. Mikuni, J.H. Kinoshita. Flavonoids as inhibitors of lens aldose reductase[J]. Science, 1975,188:1215-1216. doi: 10.1126/science.1145193

    12. [12]

      G.W. Moersch, D.F. Morrow, W.A. Neuklis. The antifertility activity of isoflavones related to genistein[J]. J. Med. Chem., 1967,10:154-158. doi: 10.1021/jm00314a005

    13. [13]

      H. Ogawara, T. Akiyama, S.I. Watanabe. Inhibition of tyrosine protein kinase activity by synthetic isoflavones and flavones[J]. J. Antibiot., 1989,42:340-343. doi: 10.7164/antibiotics.42.340

    14. [14]

      A. Ørgaard, L. Jensen. The effects of soy isoflavones on obesity[J]. Exp. Biol. Med., 2008,233:1066-1080. doi: 10.3181/0712-MR-347

    15. [15]

      (a) T. Marugame, K. Katanoda, International comparisons of cumulative risk of breast and prostate cancer, from cancer incidence in five continents Vol. Ⅷ, Jpn. J. Clin. Oncol. 36(2006) 399-400;
      (b) A. H. Wu, R. G. Ziegler, A. ]M. Y. Nomura, et al. , Soy intake and risk of breast cancer in Asians and Asian Americans, Am. J. Clin. Nutr. 68(1998) 1437S-1443S; (c) S. Medjakovic, M. Mueller, A. Jungbauer, Potential health-modulating effects of isoflavones and metabolites via activation of PPAR and AhR, Nutrients 2(2010) 241-279.

    16. [16]

      (a) K. Damodar, J. K. Kim, J. G. Jun, Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent antiinflammatory agents, Chin. Chem. Lett. 27(2016) 698-702;
      (b) Y. H. Seo, K. Damodar, J. K. Kim, J. G. Jun, Synthesis and biological evaluation of 2-aroylbenzofurans, rugchalcones A B and their derivatives as potent antiinflammatory agents, Bioorg. Med. Chem. Lett. 26(2016) 1521-1524.

    17. [17]

      D. Tian, J.R. Porter. An isoflavone from Leiophyllum buxifolium and its antiproliferative effect[J]. J. Nat. Prod., 2015,78:1748-1751. doi: 10.1021/acs.jnatprod.5b00100

    18. [18]

      A.I. Calderón, C. Terreaux, K. Schenk. Isolation and structure elucidation of an isoflavone and a sesterterpenoic acid from Henriettella fascicularis[J]. J. Nat. Prod., 2002,65:1749-1753. doi: 10.1021/np0201164

    19. [19]

      R.B. Gammill. A new and efficient synthesis of 3-halogenated 4H-1-benzopyran-4-ones[J]. Synthesis, 1979:901-903.

    20. [20]

      (a) C. Dittmer, G. Raabe, L. Hintermann, Asymmetric cyclization of 2'-hydroxychalcones to flavanones: catalysis by chiral Brønsted acids and bases, Eur. J. Org. Chem. (2007) 5886-5898;
      (b) L. Shi, X. E. Feng, J. R. Cui, et al. , Synthesis and biological activity of flavanone derivatives, Bioorg. Med. Chem. Lett. 20(2010) 5466-5468.

    21. [21]

      S. Balasubramanian, M.G. Nair. An efficient 'one pot' synthesis of isoflavones[J]. Synth. Commun., 2000,30:469-484. doi: 10.1080/00397910008087343

    22. [22]

      D. Giustarini, R. Rossi, A. Milzani, I. Dalle-Donne, Nitrite and nitrate measurement by Griess reagent in human plasma: Evaluation of interferences and standardization, in: E. Cadenas, L. Packer (Eds. ), Methods in Enzymology, Elsevier Inc. , Richmond, 2008, pp. 361-380.

    23. [23]

      (a) L. Salerno, V. Sorrenti, C. Di Giacomo, G. Romeo, M. A. Siracusa, Progress in the development of selective nitric oxide synthase (NOS) inhibitors, Curr. Pharm. Des. 8(2002) 177-200;
      (b) J. L. Song, Y. Yuan, H. B. Tan, et al. , Euryachins A and B, a new type of diterpenoids from Eurya chinensis with potent NO production inhibitory activity, RSC Adv. 6(2016) 85958-85961;
      (c) C. A. Kontogiorgis, D. Hadjipavlou-Litina, Current trends in QSAR on NO donors and inhibitors of nitric oxide synthase (NOS), Med. Res. Rev. 22(2002) 385-418.

  • 加载中
    1. [1]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    2. [2]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    3. [3]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    4. [4]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    5. [5]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    6. [6]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    11. [11]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    12. [12]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    13. [13]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    14. [14]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    17. [17]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    18. [18]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    19. [19]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    20. [20]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

Metrics
  • PDF Downloads(2)
  • Abstract views(684)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return