Citation: Zhang Shuo, Cai Chun-Hua, Guan Zhou, Lin Jia-Ping, Zhu Xing-Yu. Fabrication of virus-like particles with strip-pattern surface: A two-step self-assembly approach[J]. Chinese Chemical Letters, ;2017, 28(4): 839-844. doi: 10.1016/j.cclet.2016.12.040 shu

Fabrication of virus-like particles with strip-pattern surface: A two-step self-assembly approach

  • Corresponding author: Cai Chun-Hua, caichunhua@ecust.edu.cn Lin Jia-Ping, jlin@ecust.edu.cn
  • Received Date: 5 September 2016
    Revised Date: 18 October 2016
    Accepted Date: 24 October 2016
    Available Online: 8 April 2017

Figures(5)

  • Spherical nanostructures with striped patterns on the surfaces resembling the essential structures of natural virus particles were constructed through a two-step self-assembly approach of polystyrene-b-oligo(acrylic acid)(PS-b-oligo-AA)and poly(γ-benzyl L-glutamate)-b-poly(ethylene glycol)(PBLG-b-PEG)copolymer mixtures in solution.On the basis of difference in hydrophilicity and self-assembly properties of the two copolymers, the two-step self-assembly process is realized.It was found that PS-b-oligo-AA copolymers formed spherical aggregates by adding a certain amount of water into polymer solutions in the first step.In the second step, two polymer solutions were mixed and water was further added, inducing the self-assembly of PBLG-b-PEG on the surfaces of PS-b-oligo-AA spheres to form striped patterns.In-depth study was conducted for the indispensable defects of striped patterns which are dislocations and +1/2 disclinations.The influencing factors such as the mixing ratio of two copolymers and the added water content in the first step on the morphology and defects of the striped patterns were investigated.This work not only presents an idea to interpret mechanism of the cooperative self-assembly behavior, but also provides an effective approach to construct virus-like particles and other complex structures with controllable morphology.
  • 加载中
    1. [1]

      Mai Y.Y., Eisenberg A. Self-assembly of block copolymers[J]. Chem.Soc.Rev., 2012,41:5969-5985. doi: 10.1039/c2cs35115c

    2. [2]

      Discher D.E., Eisenberg A. Polymer vesicles[J]. Science, 2002,297:967-973. doi: 10.1126/science.1074972

    3. [3]

      Gröschel A.H., Walther A., Löbling T.I.. Guided hierarchical co-assembly of soft patchy nanoparticles[J]. Nature, 2013,503:247-251.

    4. [4]

      Chen L.L., Jiang T., Lin J.P., Cai C.H. Toroid formation through self-assembly of graft copolymer and homopolymer mixtures:experimental studies and dissipative particle dynamics simulations[J]. Langmuir, 2013,29:8417-8426. doi: 10.1021/la401553a

    5. [5]

      Zhao F.B., Liu Z.L., Sun J.P., Feng L., Hu J.W. Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water[J]. Chin.Chem.Lett., 2009,20:231-234. doi: 10.1016/j.cclet.2008.10.044

    6. [6]

      Yan D.Y., Zhou Y.F., Hou J. Supramolecular self-assembly of macroscopic tubes[J]. Science, 2004,303:65-67. doi: 10.1126/science.1090763

    7. [7]

      Cai C.H., Wang L.Q., Lin J.P. Self-assembly of polypeptide-based copolymers into diverse aggregates[J]. Chem.Commun., 2011,47:11189-11203. doi: 10.1039/c1cc12683k

    8. [8]

      Moughton A.O., Hillmyer M.A., Lodge T.P. Multicompartment block polymer micelles[J]. Macromolecules, 2012,45:2-19. doi: 10.1021/ma201865s

    9. [9]

      Marguet M., Bonduelle C., Lecommandoux S. Multicompartmentalized polymeric systems:towards biomimetic cellular structure and function[J]. Chem.Soc.Rev., 2013,42:512-529. doi: 10.1039/C2CS35312A

    10. [10]

      Zhu W.J., Lin J.P., Cai C.H. The effect of a thermo-responsive polypeptide-based copolymer on the mineralization of calcium carbonate[J]. J.Mater.Chem., 2012,22:3939-3947. doi: 10.1039/c2jm15007g

    11. [11]

      Zhang Y., Gao W.L., Liu Z.Y.. Mineralization and osteoblast behavior of multilayered films on TiO2 nanotube surfaces assembled by the layer-by-layer technique[J]. Chin.Chem.Lett., 2016,27:1091-1096. doi: 10.1016/j.cclet.2016.03.035

    12. [12]

      Dag A., Zhao J.C., Stenzel M.H. Origami with ABC triblock terpolymers based on glycopolymers:creation of virus-like morphologies[J]. ACS Macro Lett., 2015,4:579-583. doi: 10.1021/acsmacrolett.5b00163

    13. [13]

      Boato F., Thomas R.M., Ghasparian A.. Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system[J]. Angew.Chem.Int.Ed., 2007,46:9015-9018. doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Klug A. The tobacco mosaic virus particle:structure and assembly:Philos[J]. Trans.R.Soc.Lond.B Biol.Sci., 1999,354:531-535. doi: 10.1098/rstb.1999.0404

    15. [15]

      Garcea R.L., Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules[J]. Curr.Opin.Biotechnol., 2004,15:513-517. doi: 10.1016/j.copbio.2004.10.002

    16. [16]

      Xiong X.B., Uludağ H., Lavasanifar A. Virus-mimetic polymeric micelles for targeted siRNA delivery[J]. Biomaterials, 2010,31:5886-5893. doi: 10.1016/j.biomaterials.2010.03.075

    17. [17]

      Upadhyay K.K., J.F.Le Meins, Misra A.. Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(γ-benzyl glutamate)copolymers[J]. Biomacromolecules, 2009,10:2802-2808. doi: 10.1021/bm9006419

    18. [18]

      Tamerler C., Sarikaya M. Genetically designed peptide-based molecular materials[J]. ACS Nano, 2009,3:1606-1615. doi: 10.1021/nn900720g

    19. [19]

      Huang J., Bonduelle C., Thévenot J., Lecommandoux S., Heise A.. Biologically active polymersomes from amphiphilic glycopeptides[J]. J.Am.Chem.Soc., 2012,134:119-122. doi: 10.1021/ja209676p

    20. [20]

      Li Y.L., Jiang T., Lin S.L.. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers[J]. Sci.Rep., 2015,510137. doi: 10.1038/srep10137

    21. [21]

      Cai C.H., Lin J.P., Zhu X.Y.. Superhelices with designed helical structures and temperature-stimulated chirality transitions[J]. Macromolecules, 2016,49:15-22. doi: 10.1021/acs.macromol.5b02254

    22. [22]

      Cai C.H., Li Y.L., Lin J.P.. Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies[J]. Angew.Chem.Int.Ed., 2013,52:7732-7736. doi: 10.1002/anie.v52.30

    23. [23]

      Zhu X.Y., Guan Z., Lin J.P., Cai C.H.. Strip-pattern-spheres self-assembled from polypeptide-based polymer mixtures:structure and defect features[J]. Sci.Rep., 2016,629796. doi: 10.1038/srep29796

    24. [24]

      Tian B., Tao X.G., Ren T.Y.. Polypeptide-based vesicles:formation, properties and application for drug delivery[J]. J.Mater.Chem., 2012,22:17404-17414. doi: 10.1039/c2jm31806g

    25. [25]

      Zhao L.X., Li N.N., Wang K.M.. A review of polypeptide-based polymersomes[J]. Biomaterials, 2014,35:1284-1301. doi: 10.1016/j.biomaterials.2013.10.063

    26. [26]

      Chen L.L., Chen T., Fang W.X.. Synthesis and pH-responsive schizophrenic aggregation of a linear-dendron-like polyampholyte based on oppositely charged polypeptides[J]. Biomacromolecules, 2013,14:4320-4330. doi: 10.1021/bm401215w

    27. [27]

      Lin J.P., Zhu J.Q., Chen T.. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer[J]. Biomaterials, 2009,30:108-117. doi: 10.1016/j.biomaterials.2008.09.010

    28. [28]

      Zhang Z., Lv Q., Gao X.Y.. pH-Responsive poly(ethylene glycol)/poly(L-lactide)supramolecular micelles based on host-guest interaction[J]. ACS Appl. Mater.Interfaces, 2015,7:8404-8411. doi: 10.1021/acsami.5b01213

    29. [29]

      Guan X.W., Li Y.H., Jiao Z.X.. Codelivery of antitumor drug and gene by a pH-sensitive charge-conversion system[J]. ACS Appl.Mater.Interfaces, 2015,7:3207-3215. doi: 10.1021/am5078123

    30. [30]

      Agut W., BrÛlet A., Schatz C., Taton D., Lecommandoux S. pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2-(dimethylamino)ethyl methacrylate] -b-poly(glutamic acid)double hydrophilic block copolymers[J]. Langmuir, 2010,26:10546-10554. doi: 10.1021/la1005693

    31. [31]

      Carlsen A., Lecommandoux S. Self-assembly of polypeptide-based block copolymer amphiphiles[J]. Curr.Opin.Colloid Interface Sci., 2009,14:329-339. doi: 10.1016/j.cocis.2009.04.007

    32. [32]

      Talingting M.R., Munk P., Webber S.E., Tuzar Z. Onion-type micelles from polystyrene-block-poly(2-vinylpyridine)and poly(2-vinylpyridine)-block-poly (ethylene oxide)[J]. Macromolecules, 1999,32:1593-1601. doi: 10.1021/ma981269u

    33. [33]

      Zhang W.Q., Shi L.Q., Miao Z.J., Wu K., An Y.L. Core-shell-corona micellar complexes between poly(ethylene glycol)-block-poly(4-vinyl pyridine)and polystyrene-block-poly(acrylic acid)[J]. Macromol.Chem.Phys, 2005,206:2354-2361. doi: 10.1002/(ISSN)1521-3935

    34. [34]

      Zhang Z.K., Ma R.J., Shi L.Q. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions[J]. Acc.Chem.Res., 2014,47:1426-1437. doi: 10.1021/ar5000264

    35. [35]

      Jiang X.W., Wang Y., Zhang W.Q., Zheng P.W., Shi L.Q. Raspberry-like aggregates containing secondary nanospheres of polystyrene-block-poly(4-vinylpyridine)micelles[J]. Macromol.Rapid.Commun., 2006,27:1833-1837. doi: 10.1002/(ISSN)1521-3927

    36. [36]

      Lutz J.F., Geffroy S., H.von Berlepsch. Investigation of a dual set of driving forces(hydrophobic+electrostatic)for the two-step fabrication of defined block copolymer micelles[J]. Soft Matter, 2007,3:694-698. doi: 10.1039/B700106A

    37. [37]

      He D.G., He X.X., Wang K.M., Zhao Y.X. A facile route for shape-selective synthesis of silica nanostructures using poly-L-lysine as template[J]. Chin.Chem. Lett., 2013,24:99-102. doi: 10.1016/j.cclet.2013.01.038

    38. [38]

      Wickremasinghe N.C., Kumar V.A., Hartgerink J.D. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release[J]. Biomacromolecules, 2014,15:3587-3595. doi: 10.1021/bm500856c

    39. [39]

      Matyjaszewski K., Xia J.H. Atom transfer radical polymerization[J]. Chem.Rev., 2001,101:2921-2990. doi: 10.1021/cr940534g

    40. [40]

      Davis K.A., Matyjaszewski K.. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers[J]. Macromolecules, 2000,33:4039-4047. doi: 10.1021/ma991826s

    41. [41]

      Zhuang Z.L., Zhu X.M., Cai C.H., Lin J.P., Wang L.Q. Self-assembly of a mixture system containing polypeptide graft and block copolymers:experimental studies and self-consistent field theory simulations[J]. J.Phys.Chem.B, 2012,116:10125-10134. doi: 10.1021/jp305956v

    42. [42]

      Yu Y.S., Zhang L.F., Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers[J]. Macromolecules, 1998,31:1144-1154. doi: 10.1021/ma971254g

    43. [43]

      Wang Y.Y., Lin S.L., Zang M.H.. Self-assembly and photo-responsive behavior of novel ABC2-type block copolymers containing azobenzene moieties[J]. Soft Matter, 2012,8:3131-3138. doi: 10.1039/c2sm07100b

    44. [44]

      Zhuang Z.L., Cai C.H., Jiang T., Lin J.P., Yang C.Y. Self-assembly behavior of rod-coil-rod polypeptide block copolymers[J]. Polymer, 2014,55:602-610. doi: 10.1016/j.polymer.2013.12.016

    45. [45]

      Zhang L.F., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym.Adv. Technol., 1998,9:677-699. doi: 10.1002/(ISSN)1099-1581

    46. [46]

      Harrison C., Adamson D.H., Cheng Z.D.. Mechanisms of ordering in striped patterns[J]. Science, 2000,290:1558-1560. doi: 10.1126/science.290.5496.1558

    47. [47]

      Pinna M., Guo X.H., Zvelindovsky A.V.. Block copolymer nanoshells[J]. Polymer, 2008,49:2797-2800. doi: 10.1016/j.polymer.2008.04.038

    48. [48]

      Horvat A., Sevink G.J.A., Zvelindovsky A.V., Krekhov A., Tsarkova L. Specific features of defect structure and dynamics in the cylinder phase of block copolymers[J]. ACS Nano, 2008,2:1143-1152. doi: 10.1021/nn800181m

    49. [49]

      Zhang L.S., Wang L.Q., Lin J.P.. Defect structures and ordering behaviours of diblock copolymers self-assembling on spherical substrates[J]. Soft Matter, 2014,10:6713-6721. doi: 10.1039/C4SM01180E

    50. [50]

      Hopf H.. Vektorfelder inn-dimensionalen Mannigfaltigkeiten[J]. Math.Ann, 1927,96:225-249. doi: 10.1007/BF01209164

  • 加载中
    1. [1]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    2. [2]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    5. [5]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    12. [12]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    13. [13]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    14. [14]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    15. [15]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    16. [16]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    17. [17]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    18. [18]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(1)
  • Abstract views(532)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return