Citation: Hou Guang-Yue, Men Li-Hui, Wang Lu, Zheng Zhong, Liu Zhi-Qiang, Song Feng-Rui, Liu Zhong-Ying. Quantitative analysis of urinary endogenous markers for the treatment effect of Radix Scutellariae on type 2 diabetes rats[J]. Chinese Chemical Letters, ;2017, 28(6): 1214-1219. doi: 10.1016/j.cclet.2016.12.039 shu

Quantitative analysis of urinary endogenous markers for the treatment effect of Radix Scutellariae on type 2 diabetes rats

  • Corresponding author: Song Feng-Rui, songfr@ciac.ac.cn
  • 1The first two authors contributed equally to this work
  • Received Date: 30 August 2016
    Revised Date: 17 November 2016
    Accepted Date: 1 December 2016
    Available Online: 8 June 2017

Figures(5)

  • The effect of Radix Scutellariae treated on type 2 diabetic rats has been investigated by a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) based urinary quantitative approach. In this research, multiple reactions monitoring mode of MS/MS in LC-MS/MS analysis was used to quantitatively analyze the concentrations of 7 endogenous compounds in urine of normal control group, type 2 diabetic model group and Radix Scutellariae-treated group, and multivariate statistical analysis was utilized for MS data processing. The above-mentioned three groups can be distinguished via pattern recognition. The obtained results indicated that Radix Scutellariae affect the urinary metabolic profiling of type 2 diabetic rats on the polyol pathway, protein glycation reaction and amino acids metabolism pathway. According to these results, Radix Scutellariae should have the pharmacological effect on preventing or delaying the onset and progression of diabetes and its complications.
  • 加载中
    1. [1]

      Porte Jr D., Schwartz M.W.. Diabetes complications-why is glucose potentially toxic[J]. Science, 1996:272-699.

    2. [2]

      Stratton I.M., Adler A.I., Neil H.A.W.. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35):prospective observational study[J]. BMJ, 2000,321:405-412. doi: 10.1136/bmj.321.7258.405

    3. [3]

      Ramasamy R., Goldberg I.J.. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model[J]. Circ. Res., 2010,106:1449-1458. doi: 10.1161/CIRCRESAHA.109.213447

    4. [4]

      Brownlee M.. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001,414:813-820. doi: 10.1038/414813a

    5. [5]

      Ton A.L.Y., Forbes J.M., Cooper M.E.. AGE, RAGE, and ROS in diabetic nephropathy[J]. Semin. Nephrol., 2007,27:130-143. doi: 10.1016/j.semnephrol.2007.01.006

    6. [6]

      Chung S.S.M., Ho E.C.M., Lam K.S.L., Chung S.K.. Contribution of polyol pathway todiabetes-induced oxidative stress[J]. J. Am. Soc. Nephrol., 2003,14:S233-S236. doi: 10.1097/01.ASN.0000077408.15865.06

    7. [7]

      Inoguchi T., Sonta T., Tsubouchi H.. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes:role of vascular NAD(P)H oxidase[J]. J. Am. Soc. Nephrol., 2003,14:S227-S232.

    8. [8]

      Maccari R., Ottanà R.. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases:new insights and future directions[J]. J. Med. Chem., 2015,58:2047-2067. doi: 10.1021/jm500907a

    9. [9]

      Magalhães P.M., Appell H.J., Duarte J.A.. Involvement of advanced glycation end products in the pathogenesis of diabetic complications:the protective role of regular physical activity[J]. Eur. Rev. Aging Phys. Act., 2008,5:17-29. doi: 10.1007/s11556-008-0032-7

    10. [10]

      Choudhuri S., Dutta D., Sen A.. Role of N-ε-carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus[J]. Mol. Vis., 2013,19:100-113.  

    11. [11]

      Wang C.Y., Zhu H.B., Pi Z.F.. Classification of type 2 diabetes rats based on urine amino acids metabolic profiling by liquid chromatography coupled with tandem mass spectrometry[J]. J. Chromatogr. B, 2013,935:26-31. doi: 10.1016/j.jchromb.2013.07.016

    12. [12]

      Song K.H., Lee S.H., Kim B.Y., Park A.Y., Kim J.Y.. Extracts of Scutellaria baicalensis reduced body weight and blood triglyceride in db/db Mice[J]. Phytother. Res., 2013,27:244-250. doi: 10.1002/ptr.v27.2

    13. [13]

      Suh K.S., Nam Y.H., Ahn Y.M.. Effect of scutellariae radix extract on the high glucose-induced apoptosis in cultured vascular endothelial cells[J]. Biol. Pharm. Bull., 2003,26:1629-1632. doi: 10.1248/bpb.26.1629

    14. [14]

      Zhang D.Y., Wu J., Ye F.. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis[J]. Cancer Res., 2003,63:4037-4043.

    15. [15]

      Li H.B., Jiang Y., Chen F.. Separation methods used for Scutellaria baicalensis active components[J]. J. Chromatogr. B, 2004,812:277-290. doi: 10.1016/S1570-0232(04)00545-8

    16. [16]

      Zhu Z.Y., Zhao L.A., Liu X.F.. Comparative pharmacokinetics of baicalin and wogonoside by liquid chromatography-mass spectrometry after oral administration of Xiaochaihu Tang and Radix scutellariae extract to rats[J]. J. Chromatogr. B, 2010,878:2184-2190. doi: 10.1016/j.jchromb.2010.06.021

    17. [17]

      Ahad A., Mujeeb M., Ahsan H., Siddiqui W.A.. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats[J]. Biochimie, 2014,106:101-110. doi: 10.1016/j.biochi.2014.08.006

    18. [18]

      Park S.M., Hong S.M., Sung S.R., Lee J.E., Kwon D.Y.. Extracts of Rehmanniae radix, Ginseng radix and Scutellariae radix improve glucose-stimulated insulin secretionand β-cell proliferation through IRS2 induction[J]. Genes Nutr., 2008,2:347-351. doi: 10.1007/s12263-007-0065-y

    19. [19]

      El-Bassossy H.M., Hassan N.A., Mahmoud M.F., Fahmy A.. Baicalein protects against hypertension associated with diabetes:effect on vascular reactivity and stiffness[J]. Phytomedicine, 2014,21:1742-1745. doi: 10.1016/j.phymed.2014.08.012

    20. [20]

      Hou G.Y., Zhang R.X., Pi Z.F.. A new method for screeningaldose reductase inhibitors using ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Anal. Methods, 2014,6:7681-7688. doi: 10.1039/C4AY00857J

    21. [21]

      Pérez-Enciso M., Tenenhaus M.. Prediction of clinical outcomewith microarray data:a partial least squares discriminant analysis (PLS-DA) approach[J]. Hum. Genet., 2003,112:581-592.

    22. [22]

      Hsu F.F., Turk J.. Characterization of phosphatidylethanolamine as a lithiated adduct by triple quadrupole tandem mass spectrometry with electrospray ionization[J]. J. Mass Spectrom., 2000,35:596-606.  

    23. [23]

      Wilson D.K., Bohren K.M., Gabbay K.H., Quiocho F.A.. An unlikely sugar substrate site in the 1.65A structure of the human aldose reductase holoenzyme implicated in diabetic complications[J]. Science, 1992,257:81-84. doi: 10.1126/science.1621098

    24. [24]

      Goh S.Y., Cooper M.E.. The role of advanced glycation end products in progression and complications of diabetes[J]. J. Clin. Endocrinol. Metab., 2008,93:1143-1152. doi: 10.1210/jc.2007-1817

    25. [25]

      Ahmed N., Babaei-Jadidi R., Howell S.K., Beisswenger P.J., Thornalley P.J.. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes[J]. Diabetologia, 2005,48:1590-1603. doi: 10.1007/s00125-005-1810-7

    26. [26]

      Hou G.Y., Wang L., Liu S., Song F.R., Liu Z.Q.. Inhibitory effect of eleven herbal extracts on advanced glycation end-products formation and aldose reductase activity[J]. Chin. Chem. Lett., 2014,25:1039-1043. doi: 10.1016/j.cclet.2014.04.029

    27. [27]

      Piatti P.M., Monti L.D., Valsecchi G.. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients[J]. Diabetes Care, 2001,24:875-880. doi: 10.2337/diacare.24.5.875

    28. [28]

      Malloy V.L., Krajcik R.A., Bailey S.J.. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction[J]. Aging Cell, 2006,5:305-314. doi: 10.1111/ace.2006.5.issue-4

    29. [29]

      Mihalik S.J., Michaliszyn S.F., de las Heras J.. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes evidence for enhanced mitochondrial oxidation[J]. Diabetes Care, 2012,35:605-611. doi: 10.2337/DC11-1577

    30. [30]

      Qu Y., Slocum R.H., Fu J.. Quantitative amino acid analysis using a Beckman system gold HPLC 126AA analyzer[J]. Clin. Chim. Acta, 2001,312:153-162. doi: 10.1016/S0009-8981(01)00615-5

    31. [31]

      Petrie J.R., Ueda S., Webb D.J., Elliott H.L., Connel J.M.C.. Endothelial nitric oxide production and insulin sensitivity-Aphysiological link with implications for pathogenesis of cardiovascular disease[J]. Circulation, 1996,93:1331-1333. doi: 10.1161/01.CIR.93.7.1331

    32. [32]

      Rajapakse N.W., Chong A.L., Zhang W.Z., Kaye D.M.. Insulin-mediated activation of the L-arginine nitric oxide pathway in man, and its impairment in diabetes[J]. PLoS One, 2013,8e61840. doi: 10.1371/journal.pone.0061840

    33. [33]

      Tuitoek P.J., Ziari S., Tsin A.T., Rajotte R.V.. Streptozotocin-induced diabetes in rats is associated with impaired metabolic availability of vitamin A (retinol)[J]. Br. J. Nutr., 1996,75:615-622. doi: 10.1079/BJN19960164

  • 加载中
    1. [1]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    2. [2]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    5. [5]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    6. [6]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    9. [9]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    11. [11]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    14. [14]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    15. [15]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    16. [16]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    17. [17]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    18. [18]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

Metrics
  • PDF Downloads(0)
  • Abstract views(1569)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return