-
[1]
R.B. Baudy, L.P. Greenblatt, I.L. Jirkovsky. Potent quinoxaline-spaced phosphono α-amino acids of the AP-6 type as competitive NMDA antagonists:synthesis and biological evaluation[J]. J. Med. Chem.,
1993,36:331-342.
doi: 10.1021/jm00055a004
-
[2]
S.B. Lee, Y.I. Park, M.S. Dong, Y.D. Gong. Identification of 2, 3, 6-trisubstituted quinoxaline derivatives as a Wnt2/β-catenin pathway inhibitor in non-smallcell lung cancer cell lines[J]. Bioorg. Med. Chem. Lett.,
2010,20:5900-5904.
doi: 10.1016/j.bmcl.2010.07.088
-
[3]
M.M. Badran, K.A.M. Abouzid, M.H.M. Hussein. Synthesis of certain substituted quinoxalines as antimicrobial agents (part Ⅱ)[J]. Arch. Pharm. Res.,
2003,26:107-113.
doi: 10.1007/BF02976653
-
[4]
J.P. Duan, P.P. Sun, C.H. Cheng. New Iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes[J]. Adv. Mater.,
2003,15:224-228.
doi: 10.1002/adma.200390051
-
[5]
D. Schneidenbach, S. Ammermann, M. Debeaux. Efficient and long-time stable red Iridium(Ⅲ) complexes for organic light-emitting diodes based on quinoxaline ligands[J]. Inorg. Chem.,
2010,49:397-406.
doi: 10.1021/ic9009898
-
[6]
S. Dailey, W.J. Feast, R.J. Peace. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications[J]. J. Mater. Chem.,
2001,11:2238-2243.
doi: 10.1039/b104674h
-
[7]
R.S. Bhosale, S.R. Sarda, S.S. Ardhapure. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst[J]. Tetrahedron Lett.,
2005,46:7183-7186.
doi: 10.1016/j.tetlet.2005.08.080
-
[8]
A. Dhakshinamoorthy, K. Kanagaraj, K. Pitchumani. Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature[J]. Tetrahedron Lett.,
2011,52:69-73.
doi: 10.1016/j.tetlet.2010.10.146
-
[9]
W.X. Guo, H.L. Jin, J.X. Chen. An efficient catalyst-free protocol for the synthesis of quinoxaline derivatives under ultrasound irradiation[J]. J. Braz. Chem. Soc.,
2009,20:1674-1679.
doi: 10.1590/S0103-50532009000900016
-
[10]
S.V. More, M.N.V. Sastry, C.C. Wang, C.F. Yao. Molecular iodine:a powerful catalyst for the easy and efficient synthesis of quinoxalines[J]. Tetrahedron Lett.,
2005,46:6345-6348.
doi: 10.1016/j.tetlet.2005.07.026
-
[11]
S.V. More, M.N.V. Sastry, C.F. Yao. Cerium (Ⅳ) ammonium nitrate (CAN) as a catalyst in tap water:a simple, proficient and green approach for the synthesis of quinoxalines[J]. Green Chem.,
2006,8:91-95.
doi: 10.1039/B510677J
-
[12]
S. Naskar, P. Paira, R. Paira. Montmorillonite K-10 clay catalyzed solventfree synthesis of bis-indolylindane-1, 3-dione, 2-(1', 3'-dihydro-1H-[2, 3'] biindolyl-2'-ylidene)-indan-1, 3-dione and bisindolylindeno[1, 2-b]quinoxaline under microwave irradiation[J]. Tetrahedron,
2010,66:5196-5203.
doi: 10.1016/j.tet.2010.04.084
-
[13]
M. Tingoli, M. Mazzella, B. Panunzi, A. Tuzi. Elemental iodine or diphenyl diselenide in the[Bis(trifluoroacetoxy)iodo]benzene-mediated conversion of alkynes into 1, 2-diketones[J]. Eur. J. Org. Chem.,
2011,2011:399-404.
doi: 10.1002/ejoc.v2011.2
-
[14]
T.K. Huang, L. Shi, R. Wang, X.Z. Guo, X.X. Lu. Keggin type heteropolyacidscatalyzed synthesis of quinoxaline derivatives in water[J]. Chin. Chem. Lett.,
2009,20:161-164.
doi: 10.1016/j.cclet.2008.10.048
-
[15]
S. Khaksar, M. Tajbakhsh, M. Gholami, F. Rostamnezhad. A highly efficient procedure for the synthesis of quinoxaline derivatives using polyvinylpolypyrrolidone supported triflic acid catalyst (PVPP OTf)[J]. Chin. Chem. Lett.,
2014,25:1287-1290.
doi: 10.1016/j.cclet.2014.04.008
-
[16]
R. Mahesh, A.K. Dhar, T. Sasank TVNV, S. Thirunavukkarasu, T. Devadoss. Citric acid:an efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature[J]. Chin. Chem. Lett.,
2011,22:389-392.
doi: 10.1016/j.cclet.2010.11.002
-
[17]
M.M. Ali, M.M.F. Ismail, M.S.A. El-Gaby, M.A. Zahran, Y.A. Ammar. Synthesis and antimicrobial activities of some novel quinoxalinone derivatives[J]. Molecules,
2000,5:864-873.
doi: 10.3390/50600864
-
[18]
S. Antoniotti, E. Duñach. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines[J]. Tetrahedron Lett.,
2002,43:3971-3973.
doi: 10.1016/S0040-4039(02)00715-3
-
[19]
M.K. Nasar, R.R. Kumar, S. Perumal. Three-component tandem reactions of (2-arylsulfanyl-3-aryl-2-oxiranyl)(aryl)methanones and o-phenylenediamine:formation of quinoxalines[J]. Tetrahedron Lett.,
2007,48:2155-2158.
doi: 10.1016/j.tetlet.2007.01.106
-
[20]
S. Chandrasekhar, N.K. Reddy, V.P. Kumar. Oxidation of alkynes using PdCl2/CuCl2 in PEG as a recyclable catalytic system:one-pot synthesis of quinoxalines[J]. Tetrahedron Lett.,
2010,51:3623-3625.
doi: 10.1016/j.tetlet.2010.05.006
-
[21]
W. Wang, Y.W. Shen, X. Meng. Copper-catalyzed synthesis of quinoxalines with o-phenylenediamine and terminal alkyne in the presence of bases[J]. Org. Lett.,
2011,13:4514-4517.
doi: 10.1021/ol201664x
-
[22]
S.Y. Kim, K.H. Park, Y.K. Chung. Manganese(Ⅳ) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation[J]. Chem. Commun.,
2005:1321-1323.
-
[23]
C.S. Marques, N. Moura, A.J. Burke. A simple, highly regioselective, one-pot stereoselective synthesis of tertiary α-hydroxyesters:a tandem oxidation/benzilic ester rearrangement[J]. Tetrahedron Lett.,
2006,47:6049-6052.
doi: 10.1016/j.tetlet.2006.06.107
-
[24]
C.S. Cho, W.X. Ren. A recyclable copper catalysis in quinoxaline synthesis from α-hydroxyketones and o-phenylenediamines[J]. J. Organomet. Chem.,
2009,694:3215-3217.
doi: 10.1016/j.jorganchem.2009.06.002
-
[25]
C. Zhang, Z.J. Xu, L.R. Zhang, N. Jiao. Et3N-catalyzed oxidative dehydrogenative coupling of α-unsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant[J]. Tetrahedron,
2012,68:5258-5262.
doi: 10.1016/j.tet.2012.03.020
-
[26]
C.S. Cho, S.G. Oh. A new ruthenium-catalyzed approach for quinoxalines from o-phenylenediamines and vicinal-diols[J]. Tetrahedron Lett.,
2006,47:5633-5636.
doi: 10.1016/j.tetlet.2006.06.038
-
[27]
M. Lian, Q. Li, Y.P. Zhu, G.D. Yin, A.X. Wu. Logic design and synthesis of quinoxalines via the integration of iodination/oxidation/cyclization sequences from ketones and 1, 2-diamines[J]. Tetrahedron,
2012,68:9598-9605.
doi: 10.1016/j.tet.2012.09.056
-
[28]
J.W. Yu, S. Mao, Y.Q. Wang. Copper-catalyzed base-accelerated direct oxidation of C-H bond to synthesize benzils, isatins, and quinoxalines with molecular oxygen as terminal oxidant[J]. Tetrahedron Lett.,
2015,56:1575-1580.
doi: 10.1016/j.tetlet.2015.02.019
-
[29]
L.L. Liu, H.X. Li, L.M. Wan. A Mn(Ⅲ)-superoxo complex of a zwitterionic calix[4] arene with an unprecedented linear end-on Mn(Ⅲ)-O2 arrangement and good catalytic performance for alkene epoxidation[J]. Chem. Commun.,
2011,47:11146-11148.
doi: 10.1039/c1cc14262c
-
[30]
L.L. Liu, Z.G. Ren, L.M. Wan, H.Y. Ding, J.P. Lang. Inclusion of unique four-clawed crown-like nitrate-water cluster[(NO3)6(H2O)6]6- anions into the inter-spaces of a 3D H-bonded cationic net formed by a cationic calix[4] arene[J]. CrystEngComm,
2011,13:5718-5723.
doi: 10.1039/c1ce05377a
-
[31]
L.M. Wan, H.X. Li, W. Zhao. Oxidative po lymerization of 2, 6-dimethylphenol to form poly(2, 6-dimethyl-1, 4-phenylene oxide) in water through one water-soluble copper(Ⅱ) complex of a zwitterionic calix[J]. J. Polym. Sci. Part A Polym. Chem.,
2012,50:4864-4870.
doi: 10.1002/pola.v50.23
-
[32]
J. Gao, Z.G. Ren, J.P. Lang. Oxidation of benzyl alcohols to benzaldehydes in water catalyzed by a Cu(Ⅱ) complex with a zwitterionic calix[J]. J. Organomet. Chem.,
2015,791:88-92.
-
[33]
G.R. Bardajee, R. Malakooti, F. Jami, Z. Parsaei, H. Atashin. Covalent anchoring of copper-Schiff base complex into SBA-15 as a heterogeneous catalyst for the synthesis of pyridopyrazine and quinoxaline derivatives[J]. Catal. Commun.,
2012,27:49-53.
doi: 10.1016/j.catcom.2012.06.028
-
[34]
D. Kumar, K. Seth, D.N. Kommi, S. Bhagat, A.K. Chakraborti. Surfactant micelles as microreactors for the synthesis of quinoxalines in water:scope and limitations of surfactant catalysis[J]. RSC Adv.,
2013,3:15157-15168.
doi: 10.1039/c3ra41038b