Citation: Zhang Zhang, Lu Shi-Hong, Xu Bin, Wang Xi-Cun. A domino desulfitative coupling and decarboxylative coupling of 3, 4-dihydropyrimidine-2-thiones with copper(Ⅰ) carboxylates[J]. Chinese Chemical Letters, ;2017, 28(5): 1074-1078. doi: 10.1016/j.cclet.2016.12.034 shu

A domino desulfitative coupling and decarboxylative coupling of 3, 4-dihydropyrimidine-2-thiones with copper(Ⅰ) carboxylates

  • Corresponding author: Zhang Zhang, zhangz@nwnu.edu.cn Wang Xi-Cun, wangxicun@nwnu.edu.cn
  • Received Date: 10 November 2016
    Revised Date: 6 December 2016
    Accepted Date: 12 December 2016
    Available Online: 7 May 2017

Figures(5)

  • A novel and general carbon-nitrogen and carbon-carbon cross-coupling reaction between 3, 4-dihydropyrimidine-2-thiones and copper(Ⅰ) carboxylates were performed in the presence of palladium acetate. The copper(Ⅰ) carboxylates act not only as desulfurative reagents but also as sources of carbon nucleophiles. A wide array of highly substituted and functionalized pyrimidines scaffolds were synthesized in good yields.
  • 加载中
    1. [1]

      N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bondforming cross-couplings[J]. J. Org. Chem., 2002,67:5553-5566. doi: 10.1021/jo025732j

    2. [2]

      N. Miyaura, A. Suzuki. Palladium-catalyzed cross-coupling reactions of organoboron compounds[J]. Chem. Rev., 1995,95:2457-2483. doi: 10.1021/cr00039a007

    3. [3]

      J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction[J]. Chem. Rev., 2002,102:1359-1470. doi: 10.1021/cr000664r

    4. [4]

      S.V. Ley, A.W. Thomas. Modern Synthetic Methods for Copper-Mediated C (aryl)-O, C (aryl)-N, and C (aryl)-S Bond Formation[J]. Angew. Chem. Int. Ed, 2003,42:5400-5449. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      (a) N. E. Leadbeater, M. Marco, palladium catalysis of the Suzuki reaction in water using microwave heating, Org. Lett. 4(2002) 2973-2976;
      (b) D. Nöteberg, W. Schaal, E. Hamelink, L. Vrang, M. Larhed, High-speed optimization of inhibitors of the malarial proteases plasmepsin I and Ⅱ, J. Comb. Chem. 5(2003) 456-464.

    6. [6]

      (a) G. Burton, P. Cao, G. Li, R. Rivero, Palladium-catalyzed intermolecular coupling of aryl chlorides and sulfonamides under microwave irradiation, Org. Lett. 5(2003) 4373-4376;
      (b) A. Jensen, X. Liang, D. Tanner, N. Skjaerbaek, Rapid and efficient microwaveassisted synthesis of aryl aminobenzophenones using Pd-catalyzed amination, J. Org. Chem. 69(2004) 4936-4947.

    7. [7]

      (a) P. Walla, C. O. Kappe, Microwave-assisted Negishi and Kumada crosscoupling reactions of aryl chlorides, Chem. Commun. 5(2004) 564-565;
      (b) I. Mutule, E. Suna, A convenient microwave assisted arylzinc generationNegishi coupling protocol, Tetrahedron Lett. 45(2004) 3909-3912.

    8. [8]

      N. Kaval, K. Bisztray, W. Dehaen. Microwave-enhanced transition metalcatalyzed decoration of 2(1H)-pyrazinone scaffolds[J]. Mol. Divers., 2003,7:125-134. doi: 10.1023/B:MODI.0000006807.43408.d5

    9. [9]

      Y. J. Wu, H. He, A. L'Heureux, Copper-catalyzed coupling of (S)-1-(3-bromophenyl)-ethylamine and N-H containing heteroarenes using microwave heating, Tetrahedron Lett. 44(203) (2017) 4217-4218.

    10. [10]

      (a) L. S. Liebeskind, J. Srogl, Thiol ester-boronic acid coupling. A mechanistically unprecedented and general ketone synthesis, J. Org. Chem. 122(2000) 11260-11261;
      (c) H. Yang, H. Li, R. Wittenberg, et al. , Ambient temperature synthesis of high enantiopurity N-protected peptidyl ketones by peptidyl thiol ester-boronic acid cross-coupling, J. Am. Chem. Soc. 129(2007) 1132-1140.

    11. [11]

      (a) L. S. Liebeskind, J. Srogl, Heteroaromatic thioether-boronic acid crosscoupling under neutral reaction conditions, Org. Lett. 4(2002) 979-981;
      (c) C. Savarin, J. Srogl, L. S. Liebeskind, Substituted alkyne synthesis under nonbasic conditions: Copper carboxylate-mediated, palladium-catalyzed thioalkyne-boronic acid cross-coupling, Org. Lett. 3(2001) 91-93.

    12. [12]

      C. Kusturin, L.S. Liebeskind, H. Rahman, K. Sample, B. Schweitzer. Switchable catalysis:Modular synthesis of functionalized pyrimidinones via selective sulfide and halide cross-coupling chemistry[J]. Org. Lett., 2003,5:4349-4352. doi: 10.1021/ol035649y

    13. [13]

      (a) H. Prokopcova, C. O. Kappe, Copper-catalyzed C-C coupling of thiol esters and boronic acids under aerobic conditions, Angew. Chem. Int. Ed. 47(2008) 3674-3676;
      (b) H. Prokopcova, C. O. Kappe, The Liebeskind-Srogl C-C cross coupling reaction, Angew. Chem. Int. Ed. 48(2009) 2276-2286.

    14. [14]

      A. Henke, J. Srogl. Pd2+ and Cu2+ catalyzed oxidative cross-coupling of mercaptoacetylenes and arylboronic acids[J]. Chem. Commun., 2011,47:4282-4284. doi: 10.1039/c1cc10505a

    15. [15]

      (a) A. C. Wotal, D. J. Weix, Synthesis of functionalized dialkyl ketones from carboxylic acid derivatives and alkyl halides, Org. Lett. 14(2012) 1476-1479;
      (b) C. I. Someya, M. Weidauer, S. Enthaler, Nickel-catalyzed C(sp2)-C(sp2) cross coupling reactions of sulfur-functionalities and grignard reagents, Catal. Lett. 143(2013) 424-431.

    16. [16]

      S.R. Dubbaka, P. Vogel. Organosulfur compounds:electrophilic reagents in transition metal catalyzed carbon-carbon bond forming reactions[J]. Angew. Chem., 2005,44:7674-7684. doi: 10.1002/(ISSN)1521-3773

    17. [17]

      C. Oliver Kappe. Palladium (0)-catalyzed, copper (I)-mediated coupling of boronic acids with cyclic thioamides Selective carbon-carbon bond formation for the functionalization of heterocycles[J]. J. Org. Chem., 2007,72:4440-4448. doi: 10.1021/jo070408f

    18. [18]

      (a) Z.J. Quan, X.D. Jia, Z. Zhang, Y.X. Da, X.C. Wang, A domino desulfitative coupling/acylation/hydration process cocatalyzed by copper (I) and palladium (Ⅱ):synthesis of highly substituted and functionalized pyrimidines, Adv. Synth. Catal. 354(2012) 2939-2948;
      (d) B.X. Du, Z.J. Quan, X.C. Wang, Chemo controlled cross coupling of di(hetero) aryl disulfides with Grignard reagents:C-C vs. C-S bond formation, Adv. Synth. Catal. 357(2015) 1270-1276.

    19. [19]

      (a) L. J. Gooßen, G. Deng, L. M. Levy, Synthesis of biaryls via catalytic decarboxylative coupling, Science 313(2006) 662-664;
      (b) L. J. Gooßen, N. Rodríguez, B. Melzer, et al. , Synthesis via Pd-catalyzed decarboxylative coupling of aromatic carboxylates with aryl halides, J. Am. Chem. Soc. 129(2007) 4824-4833.

    20. [20]

      (a) J. M. Becht, C. Catala, L. D. Cedric, C. Le Drian, A. Wagner, Synthesis of biaryls via decarboxylative Pd-catalyzed cross-coupling reaction, Org. Lett. 9(2007) 1781-1783;
      (d) R. Shang, Q. Xu, Y. Y. Jiang, et al. , Pd-catalyzed decarboxylative cross coupling of potassium polyfluorobenzoates with aryl bromides, chlorides, and triflates, Org. Lett. 12(2010) 1000-1003.

    21. [21]

      (a) L. N. Guo, H. Wang, X. H. Duan, Recent advances in catalytic decarboxylative acylation reactions via a radical process, Org. Biomol. Chem. 14(2016) 7380-7391;
      (e) L. J. Gooßen, N. Rodríguez, K. Gooßen, Carboxylic acids as substrates in homogeneous catalysis, Angew. Chem. Int. Ed. 47(2008) 3100-3120.

    22. [22]

      (a) X. Li, D. Zou, F. Leng, et al. , Arylation of 2-substituted pyridines via Pdcatalyzed decarboxylative cross-coupling reactions of 2-picolinic acid, Chem. Commun. 49(2013) 312-314;
      (d) M. Nakano, H. Tsurugi, T. Satoh, M. Miura, Palladium-catalyzed perarylation of 3-thiophene and 3-furancarboxylic acids accompanied by C-H bond cleavage and decarboxylation, Org. Lett. 10(2008) 1851-1854.

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    4. [4]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    5. [5]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    9. [9]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    10. [10]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    11. [11]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    12. [12]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    13. [13]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    14. [14]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    15. [15]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    16. [16]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    17. [17]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    18. [18]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    19. [19]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    20. [20]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

Metrics
  • PDF Downloads(1)
  • Abstract views(646)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return