Citation: Li Lan-Lan, Jiang Ru-Yi, Chen Jin-Xing, Wang Mo-Zhen, Ge Xue-Wu. One-step synthesis of self-healable hydrogels by the spontaneous phase separation of linear multi-block copolymers during the emulsion copolymerization[J]. Chinese Chemical Letters, ;2017, 28(4): 868-874. doi: 10.1016/j.cclet.2016.12.025 shu

One-step synthesis of self-healable hydrogels by the spontaneous phase separation of linear multi-block copolymers during the emulsion copolymerization

  • Corresponding author: Wang Mo-Zhen, pstwmz@ustc.edu.cn Ge Xue-Wu, xwge@ustc.edu.cn
  • Received Date: 11 November 2016
    Revised Date: 30 November 2016
    Accepted Date: 12 December 2016
    Available Online: 7 April 2017

Figures(9)

  • Self-healable polyacrylamide-based hydrogels were prepared at room temperature via a one-step emulsion copolymerization of acrylamide (AM), dodecyl 2-methacrylate (DM), and 5-acetylaminopentyl acrylate (AAPA) using sodium dodecyl sulfonate (SDS) as the emulsifler and ammonium persulfate (APS) as the initiator.The produced linear multi-block copolymer chains are composed of randomly-linked hydrophilic polyacrylamide segments (PAM) and hydrophobic segments constituted by DM and AAPA units (P (DM-co-AAPA)).The P (DM-co-AAPA) segments will self-aggregate into hydrophobic micro-domains during the polymerization process driven by the hydrophobic interactions, and finally separate from water phase, acting as the crosslinks and leading to the formation of strong hydrogels with a storage modulus as high as 400 Pa.These hydrophobic microdomains will be dissolved in water when the temperature increases to 70 ℃, resulting in a temperature-responsive reversible sol-gel transition of the prepared hydrogels.Furthermore, the prepared hydrogels have excellent self-healing ability.The broken hydrogels can be automatically healed into a body with a same strength within 2-min's contact.This work provides a new simple way to prepare reversible physical crosslinked hydrogel with high strength and self-healing efficiency.
  • 加载中
    1. [1]

      Billiet T., Vandenhaute M., Schelfhout J., S.Van Vlierberghe, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J]. Biomaterials, 2012,33:6020-6041. doi: 10.1016/j.biomaterials.2012.04.050

    2. [2]

      Hamidi M., Azadi A., Rafiei P. Hydrogel nanoparticles in drug delivery[J]. Adv. Drug Deliv.Rev., 2008,60:1638-1649. doi: 10.1016/j.addr.2008.08.002

    3. [3]

      Wang Y., Chai Z.H., He H.Y., Jiang Y.Z., Fu G.Q. Polyacrylamide hydrogels with phenylboronic acid moieties for the imprinting of proteins[J]. Chin.Chem.Lett., 2010,21:1487-1489. doi: 10.1016/j.cclet.2010.06.005

    4. [4]

      Brown H.R. A model of the fracture of double network gels[J]. Macromolecules, 2007,40:3815-3818. doi: 10.1021/ma062642y

    5. [5]

      S. Mora, The kinetic approach to fracture in transient networks, Soft Matter 7 (2011)4908-4917.

    6. [6]

      Cong H.P., Wang P., Yu S.H. Stretchable and self-healing graphene oxide-polymer composite hydrogels:a dual-network design[J]. Chem.Mater., 2013,25:3357-3362. doi: 10.1021/cm401919c

    7. [7]

      D. L. Taylor, M. In Het Panhuis, Self-healing hydrogels, Adv. Mater. 28(2016) 9060-9093.

    8. [8]

      Phadke A., Zhang C., Arman B.. Rapid self-healing hydrogels[J]. Proc.Natl. Acad.Sci.U.S.A., 2012,109:4383-4388. doi: 10.1073/pnas.1201122109

    9. [9]

      Zhu B.L., Jasinski N., Benitez A.. Hierarchical nacre mimetics with synergistic mechanical properties by control of molecular interactions in self-healing polymers[J]. Angew.Chem.Int.Ed., 2015,54:8653-8657. doi: 10.1002/anie.201502323

    10. [10]

      Akay G., A.Hassan-Raeisi , Tuncaboylu D.C.. Self-healing hydrogels formed in catanionic surfactant solutions[J]. Soft Matter, 2013,9:2254-2261. doi: 10.1039/c2sm27515e

    11. [11]

      X. Hao, H. Liu, Z. Lu, Y. J. Xie, H. Y. Yang, Endowing the conventional HMPAM hydrogel with pH-responsive and self-healing properties, J. Mater. Chem. A 1 (2013)6920-6927.

    12. [12]

      Deng G.H., Li F.Y., Yu H.G.. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions[J]. ACS Macro Lett., 2012,1:275-279. doi: 10.1021/mz200195n

    13. [13]

      Zeng C., Seino H., Ren J., Hatanaka K., Yoshie N. Bio-based furan polymers with self-healing ability[J]. Macromolecules, 2013,46:1794-1802. doi: 10.1021/ma3023603

    14. [14]

      Zhang Y.L., Yang B., Zhang X.Y.. A magnetic self-healing hydrogel[J]. Chem. Commun., 2012,48:9305-9307. doi: 10.1039/c2cc34745h

    15. [15]

      J. J. Cash, T. Kubo, A. P. Bapat, B. S. Sumerlin, Room-temperature self-healing polymers based on dynamic-covalent boronic esters, Macromolecules 48 (2015)2098-2106.

    16. [16]

      A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Macroscopic self-assembly through molecular recognition, Nat. Chem. 3 (2011)34-37.

    17. [17]

      Wei Z.J., He J., Liang T.. Autonomous self-healing of poly (acrylic acid) hydrogels induced by the migration of ferric ions[J]. Polym.Chem., 2013,4:4601-4605. doi: 10.1039/c3py00692a

    18. [18]

      Ahn B.K., Lee D.W., Israelachvili J.N., Waite J.H. Surface-initiated self-healing of polymers in aqueous media[J]. Nat.Mater., 2014,13:867-872. doi: 10.1038/nmat4037

    19. [19]

      Dai X.Y., Zhang Y.Y., Gao L.N.. A mechanically strong highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel[J]. Adv. Mater., 2015,27:3566-3571. doi: 10.1002/adma.v27.23

    20. [20]

      Liu H., Xiong C.M., Tao Z.. Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel[J]. RSC Adv., 2015,5:33083-33088. doi: 10.1039/C4RA15003A

    21. [21]

      Tuncaboylu D.C., Sari M., Oppermann W., Okay O. Tough and self-healing hydrogels formed via hydrophobic interactions[J]. Macromolecules, 2011,44:4997-5005. doi: 10.1021/ma200579v

    22. [22]

      Candau F., Selb J. Hydrophobically-modified polyacrylamides prepared by micellar polymerization[J]. Adv.Colloid Interface Sci., 1999,79:149-172. doi: 10.1016/S0001-8686(98)00077-3

    23. [23]

      Regalado E.J., Selb J., Candau F. Viscoelastic behavior of semidilute solutions of multisticker polymer chains[J]. Macromolecules, 1999,32:8580-8588. doi: 10.1021/ma990999e

    24. [24]

      Jeon I., Cui J.X., Illeperuma W.R.K., Aizenberg J., Vlassak J.J. Extremely stretchable and fast self-healing hydrogels[J]. Adv.Mater., 2016,28:4678-4683. doi: 10.1002/adma.v28.23

    25. [25]

      Caputo M.R., Selb J., Candau F. Effect of temperature on the viscoelastic behaviour of entangled solutions of multisticker associating polyacrylamides[J]. Polymer, 2004,45:231-240. doi: 10.1016/j.polymer.2003.11.010

    26. [26]

      A. Hill, F. Candau, J. Selb, Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis, Macromolecules 26 (1993)4521-4532.

    27. [27]

      Hao X., Zhou W.F., Yao R.C.. A new class of thermo-switchable hydrogel: application to the host-guest approach[J]. J.Mater.Chem.A, 2013,1:14612-14617. doi: 10.1039/c3ta13250a

    28. [28]

      Y. L. Chen, Z. B. Guan, Multivalent hydrogen bonding block copolymers self-assemble into strong and tough self-healing materials, Chem. Commun. 50 (2014)10868-10870.

    29. [29]

      Williams G.A., Ishige R., Cromwell O.R.. Mechanically robust and self-healable superlattice nanocomposites by self-assembly of single-component sticky polymer-grafted nanoparticles[J]. Adv.Mater., 2015,27:3934-3941. doi: 10.1002/adma.201500927

    30. [30]

      Chambon F., Winter H.H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry[J]. J.Rheol., 1987,31:683-697. doi: 10.1122/1.549955

    31. [31]

      Winter H.H., Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point[J]. J.Rheol., 1986,30:367-382. doi: 10.1122/1.549853

    32. [32]

      Bai T., Liu S.J., Sun F.. Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions[J]. Biomaterials, 2014,35:3926-3933. doi: 10.1016/j.biomaterials.2014.01.077

    33. [33]

      Tuncaboylu D.C., Sahin M., Argun A., Oppermann W., Okay O. Dynamics and large strain behavior of self-healing hydrogels with and without surfactants[J]. Macromolecules, 2012,45:1991-2000. doi: 10.1021/ma202672y

    34. [34]

      Chen Y.L., Kushner A.M., Williams G.A., Guan Z.B. Multiphase design of autonomic self-healing thermoplastic elastomers[J]. Nat.Chem., 2012,4:467-472. doi: 10.1038/nchem.1314

  • 加载中
    1. [1]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    4. [4]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    5. [5]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    6. [6]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    7. [7]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    8. [8]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    9. [9]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    12. [12]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    13. [13]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    14. [14]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    15. [15]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    18. [18]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    19. [19]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    20. [20]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

Metrics
  • PDF Downloads(0)
  • Abstract views(539)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return