Citation: Ren Qing, Lu Xue-Ying, Han Jian-Xin, Aisa Haji Akber, Yuan Tao. Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase[J]. Chinese Chemical Letters, ;2017, 28(5): 1052-1056. doi: 10.1016/j.cclet.2016.12.010 shu

Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase

  • Corresponding author: Yuan Tao, yuantao@ms.xjb.ac.cn
  • Received Date: 8 October 2016
    Revised Date: 15 November 2016
    Accepted Date: 30 November 2016
    Available Online: 15 May 2016

Figures(4)

  • Two new 24-methyl lanostane triterpenoids, hispindic acids A and B (1 and 2), and a new phenolic compound, hispinine (7), along with nine known compounds (3-6, and 8-12), were isolated from the fruiting bodies of Inonotus hispidus. Their structures were elucidated based on the extensive analysis of spectroscopic data (NMR and HRMS). Hispindic acid A (1) possesses an unusual formyl group at C-30. Compounds 1, 3-4, and 8 showed stronger activate abilities of melanogenesis and tyrosinase in B16 melanoma cells than those of positive control, 8-methoxypsoralen, at 50 μmol/L.
  • 加载中
    1. [1]

      Zan L.F., Bao H.Y.. Progress in Inonotus hispidus research[J]. Acta Edulis Fungi, 2011,18:78-82.  

    2. [2]

      Edwards R.L., Lewis D.G., Wilson D.V.. Constituents of the higher fungi. Part Ⅰ. hispidin, a new 4-hydroxy-6-styryl-2-pyrone from Polyporus hispidus (Bull.) Fr[J]. J. Chem. Soc., 1961:4995-5002. doi: 10.1039/jr9610004995

    3. [3]

      Fiasson J.L.. Distribution of styrylpyrones in the basidiocarps of various Hymenochaetaceae[J]. Biochem. Syst. Ecol., 1982,10:289-296. doi: 10.1016/0305-1978(82)90002-3

    4. [4]

      Ali N.A.A., Jansen R., Pilgrim H., Liberra K., Lindequist U.. Hispolon, a yellow pigment from Inonotus hispidus[J]. Phytochemistry, 1996,41:927-929. doi: 10.1016/0031-9422(95)00717-2

    5. [5]

      Ali N.A.A., Mothana R.A.A., Lesnau A., Pilgrim H., Lindequist U.. Antiviral activity of Inonotus hispidus[J]. Fitoterapia, 2003,74:483-485. doi: 10.1016/S0367-326X(03)00119-9

    6. [6]

      Zan L.F., Qin J.C., Zhang Y.M.. Antioxidant hispidin derivatives from medicinal mushroom Inonotus hispidus[J]. Chem. Pharm. Bull., 2011,59:770-772. doi: 10.1248/cpb.59.770

    7. [7]

      Lee I.K., Yun B.S.. Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms Inonotus and Phellinus[J]. Bioorg. Med. Chem., 2007,15:3309-3314. doi: 10.1016/j.bmc.2007.03.039

    8. [8]

      Anderson C.G., Epstein W.W.. Metabolic intermediates in the biological oxidation of lanosterol to eburicoic acid[J]. Phytochemistry, 1971,10:2713-2717. doi: 10.1016/S0031-9422(00)97269-8

    9. [9]

      Kikuchi T., Kanomi S., Murai Y.. Constituents of the fungus Ganoderma lucidum (Fr.) Karst. Ⅱ.:structures of ganoderic acids F, G, and H, lucidenic acids D2 and E2 and related compounds[J]. Chem. Pharm. Bull., 1986,34:4018-4029. doi: 10.1248/cpb.34.4018

    10. [10]

      Ying Y.M., Zhang L.Y., Zhang X.. Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus[J]. Phytochemistry, 2014,108:171-176. doi: 10.1016/j.phytochem.2014.09.022

    11. [11]

      Bok J.W., Lermer L., Chilton J., Klingeman H.G., Towers G.H.N.. Antitumor sterols from the mycelia of Cordyceps sinensis[J]. Phytochemistry, 1999,51:891-898. doi: 10.1016/S0031-9422(99)00128-4

    12. [12]

      Lee I.K., Yun B.S.. Peroxidase-mediated formation of the fungal polyphenol 3, 14'-bihispidinyl[J]. J. Microbiol. Biotechnol., 2008,18:107-109.  

    13. [13]

      Han J.J., Bao L., He L.W.. Phaeolschidins A-E, fivehispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the Tibetan plateau[J]. J. Nat. Prod., 2013,76:1448-1453. doi: 10.1021/np400234u

  • 加载中
    1. [1]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    2. [2]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    3. [3]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

Metrics
  • PDF Downloads(0)
  • Abstract views(648)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return