Citation: Rong Ming-Cong, Zhang Ke-Xin, Wang Yi-Ru, Chen Xi. The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+[J]. Chinese Chemical Letters, ;2017, 28(5): 1119-1124. doi: 10.1016/j.cclet.2016.12.009 shu

The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+

  • Corresponding author: Chen Xi, xichen@xmu.edu.cn
  • Received Date: 5 September 2016
    Revised Date: 27 October 2016
    Accepted Date: 8 November 2016
    Available Online: 15 May 2016

Figures(5)

  • Heteroatom doping is an efficient approach to regulate the fluorescence properties of carbon dots. Using aminophenylboronic acid as the raw material, a combustion method was developed for the synthesis of boron, nitrogen-doped carbon dots (B, N-carbon dots). The B, N-carbon dots emitted green fluorescence and displayed high resistance to both photo bleaching and ionic strength. A facile fluorescence sensing approach for Cu2+ was fabricated via static fluorescence quenching. Under optimal conditions, a rapid detection of Cu2+ could be completed in 2 min with a linearity ranging from 1 μmol/L to 25 μmol/L and a detection limit of 0.3 μmol/L. Furthermore, the proposed method showed potential applications for the detection of Cu2+ in natural water samples.
  • 加载中
    1. [1]

      Y.F. Wang, A.G. Hu. Carbon quantum dots:synthesis, properties and applications[J]. J. Mater. Chem.C, 2014,2:6921-6939. doi: 10.1039/C4TC00988F

    2. [2]

      S.N. Baker, G.A. Baker. Luminescent carbon nanodots:emergent nanolights[J]. Angew. Chem. Int. Ed., 2010,49:6726-6744. doi: 10.1002/anie.200906623

    3. [3]

      L.L. Li, G.H. Wu, G.H. Yang. Focusing on luminescent graphene quantum dots:current status and future perspectives[J]. Nanoscale, 2013,5:4015-4039. doi: 10.1039/c3nr33849e

    4. [4]

      X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen. Glowing graphene quantum dots and carbon dots:properties, syntheses, and biological applications[J]. Small, 2015,11:1620-1636. doi: 10.1002/smll.v11.14

    5. [5]

      Z.T. Fan, Y.C. Li, X.H. Li. Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging[J]. Carbon, 2014,70:149-156. doi: 10.1016/j.carbon.2013.12.085

    6. [6]

      S.Y. Lim, W. Shen, Z.Q. Gao. Carbon quantum dotsand their applications[J]. Chem. Soc. Rev., 2015,44:362-381. doi: 10.1039/C4CS00269E

    7. [7]

      G.S. Hong, S. Diao, A.L. Antaris, H.J. Dai. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chem. Rev., 2015,115:10816-10906. doi: 10.1021/acs.chemrev.5b00008

    8. [8]

      C.Q. Ding, A.W. Zhu, Y. Tian. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Acc. Chem. Res., 2014,47:20-30. doi: 10.1021/ar400023s

    9. [9]

      H.B. Wang, T. Maiyalagan, X. Wang. Review on recent progress in nitrogendoped graphene:synthesis, characterization, and its potential applications[J]. ACS Catal., 2012,2:781-794. doi: 10.1021/cs200652y

    10. [10]

      Y.M. Guo, L.F. Zhang, S.S. Zhang. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions[J]. Biosens. Bioelectron., 2015,63:61-71. doi: 10.1016/j.bios.2014.07.018

    11. [11]

      H.J. Zhang, Y.L. Chen, M.J. Liang. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J]. Anal. Chem., 2014,86:9846-9852. doi: 10.1021/ac502446m

    12. [12]

      Y.L. Xu, X.Y. Niu, H.J. Zhang. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor[J]. J. Agric. Food Chem., 2015,63:1747-1755. doi: 10.1021/jf505759z

    13. [13]

      Y. Wang, Y. Zhang, M.Y. Jia. Functionalization of carbonaceous nanodots from Mn-coordinating functional knots[J]. Chem. Eur. J., 2015,21:14843-14850. doi: 10.1002/chem.201502463

    14. [14]

      Q. Xu, T.R. Kuang, Y. Liu. Heteroatom-doped carbon dots:synthesis, characterization, properties, photoluminescence mechanism and biological applications[J]. J. Mater. Chem. B, 2016,4:7204-7219. doi: 10.1039/C6TB02131J

    15. [15]

      R.J. Liu, J.J. Zhao, Z.R. Huang. Nitrogen and phosphorus co-doped graphene quantum dots as a nano-sensor for highly sensitive and selective imaging detection of nitrite in live cell[J]. Sens. Actuators B, 2017,240:604-612. doi: 10.1016/j.snb.2016.09.008

    16. [16]

      X.C. Sun, C. Brückner, Y. Lei. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale, 2015,7:17278-17282. doi: 10.1039/C5NR05549K

    17. [17]

      B.F. Shi, Y.B. Su, L.L. Zhang. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells[J]. ACS Appl. Mater. Interfaces, 2016,8:10717-10725. doi: 10.1021/acsami.6b01325

    18. [18]

      H.K. Sadhanala, K.K. Nanda. Boron and nitrogen co-doped carbon nanoparticles as photoluminescent probes for selective and sensitive detection of picric acid[J]. J. Phys. Chem.C, 2015,119:13138-13143. doi: 10.1021/acs.jpcc.5b04140

    19. [19]

      S. Jahan, F. Mansoor, S. Naz, J.P. Lei, S. Kanwal. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye[J]. Anal. Chem., 2013,85:10232-10239. doi: 10.1021/ac401949k

    20. [20]

      P. Miao, K. Han, Y.G. Tang. Recent advances in carbon nanodots:synthesis, properties and biomedical applications[J]. Nanoscale, 2015,7:1586-1595. doi: 10.1039/C4NR05712K

    21. [21]

      M.C. Rong, X.H. Song, T.T. Zhao. Synthesis of highly fluorescent P, O-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity[J]. J. Mater. Chem.C, 2015,3:10916-10924. doi: 10.1039/C5TC02584B

    22. [22]

      X.B. Li, Z.G. Niu, L.L. Chang, M.X. Chen, E.J. Wang. Quinoline-based colorimetric chemosensor for Cu2+:Cu2+-induced deprotonation leading to color change[J]. Chin. Chem. Lett., 2014,25:80-82. doi: 10.1016/j.cclet.2013.08.002

    23. [23]

      P. Li, X. Duan, Z.Z. Chen. A near-infrared fluorescent probe for detecting copper(Ⅱ) with high selectivity and sensitivity and its biological imaging applications[J]. Chem. Commun., 2011,47:7755-7757. doi: 10.1039/c1cc11885d

    24. [24]

      Y.W. Duan, H.Y. Tang, Y. Guo. The synthesis and study of the fluorescent probe for sensing Cu2+ based on a novel coumarin Schiff-base[J]. Chin. Chem. Lett., 2014,25:1082-1086. doi: 10.1016/j.cclet.2014.05.001

    25. [25]

      N. Zhang, Y.M. Si, Z.Z. Sun. Rapid selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with silver effect-enhanced red fluorescence[J]. Anal. Chem., 2014,86:11714-11721. doi: 10.1021/ac503102g

    26. [26]

      L.H. Jin, C.S. Han. Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots[J]. Anal. Chem., 2014,86:7209-7213. doi: 10.1021/ac501515f

    27. [27]

      L. Zhang, Z.Y. Zhang, R.P. Liang, Y.H. Li, J.D. Qiu. Boron-doped graphene quantum dots for selective glucose sensing based on the abnormal aggregation-induced photoluminescence enhancement[J]. Anal. Chem., 2014,86:4423-4430. doi: 10.1021/ac500289c

    28. [28]

      C.C. Tang, Y.S. Bando, Y. Huang, C.Y. Zhi, D. Golberg. Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles[J]. Adv. Funct. Mater., 2008,18:3653-3661. doi: 10.1002/adfm.v18:22

    29. [29]

      H.L. Fei, R.Q. Ye, G.L. Ye. Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction[J]. ACS Nano, 2014,8:10837-10843. doi: 10.1021/nn504637y

    30. [30]

      Y.Z. Han, D. Tang, Y.M. Yang. Non-metal single/dual doped carbon quantum dots:a general flame synthetic method and electro-catalytic properties[J]. Nanoscale, 2015,7:5955-5962. doi: 10.1039/C4NR07116F

    31. [31]

      M.C. Rong, L.P. Lin, X.H. Song. Fluorescence sensing of chromium(Ⅵ) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent switch[J]. Biosens. Bioelectron., 2015,68:210-217. doi: 10.1016/j.bios.2014.12.024

    32. [32]

      M.C. Rong, L.P. Lin, X.H. Song. A label-free fluorescence sensing approach for selective and sensitive detection of 24, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets[J]. Anal. Chem., 2015,87:1288-1296. doi: 10.1021/ac5039913

    33. [33]

      M.C. Rong, Z.X. Cai, L. Xie. Study on the ultrahigh quantum yield of fluorescent P, O-g-C3N4 nanodots and its application in cell imaging[J]. Chem. Eur. J., 2016,22:9387-9395. doi: 10.1002/chem.201601065

    34. [34]

      A.B. Bourlinos, G. Trivizas, M.A. Karakassides. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties[J]. Carbon, 2015,83:173-179. doi: 10.1016/j.carbon.2014.11.032

    35. [35]

      M. Ganiga, J. Cyriac. Understanding the photoluminescence mechanism of nitrogen-doped carbon dots by selective interaction with copper ions[J]. ChemPhysChem, 2016,17:2315-2321. doi: 10.1002/cphc.v17.15

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    4. [4]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    5. [5]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    6. [6]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    7. [7]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    8. [8]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    9. [9]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    10. [10]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    14. [14]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    15. [15]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    16. [16]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    17. [17]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    20. [20]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

Metrics
  • PDF Downloads(0)
  • Abstract views(647)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return