Citation: Qi Qi, Zhao Tian-Xin, An Bo-Lin, Liu Xuan-Yong, Zhong Chao. Self-assembly and morphological characterization of two-component functional amyloid proteins[J]. Chinese Chemical Letters, ;2017, 28(5): 1062-1068. doi: 10.1016/j.cclet.2016.12.008 shu

Self-assembly and morphological characterization of two-component functional amyloid proteins

  • Corresponding author: Zhong Chao, zhongchao@shanghaitech.edu.cn
  • Received Date: 8 October 2016
    Revised Date: 10 November 2016
    Accepted Date: 29 November 2016
    Available Online: 10 May 2016

Figures(5)

  • Functional amyloid has been increasingly applied as self-assembling nanostructures to construct multifunctional biomaterials. However, little has been known how different side domains, varied fusion positions and subunits affect self-assembly and morphologies of amyloid fibrils. Here, we constructed three groups of two-component amyloid proteins based on CsgA, the major protein components of Escherichia coli biofilms, to bridge these gaps. We showed that all fusion proteins have amyloid features, as indicated by Congo red assay. Atomic force microscopy (AFM) indeed reveals that these fusion proteins are able to self-assemble into fibrils, with an average diameter of 0.5-2 nm and length of hundreds of nanometers to several micrometers. The diameter of fibrils increases with the increase of the molecular weight of fusion domains, while the dynamic assembly of recombinant proteins was delayed as a result of the introduction of fusion domains. Moreover, fusion of the same functional domains but at intermediate position seems to cause the most interference on fibril assembly compared with those fused at C or Nterminus, as mainly short and irregular fibrils were detected. This phenomenon appears more pronounced for randomly coiled mussel foot proteins (Mfps) than for rigid chitin-binding domain (CBD). Finally, increase of the molecular weight of tandem repeats in protein monomer seemed to increase the fibril diameter of the resultant fibrils, but either reduction of the tandem repeats of CsgA to one single belta-sheet loop or increase in the number of tandem repeats of CsgAs from one to four produced shorter and intermittent fibrils compared with CsgA control protein. These studies therefore provide insights into self-assembly of two-component amyloid proteins and lay the foundation for rational design of multifunctional molecular biomaterials.
  • 加载中
    1. [1]

      Chiti F., Dobson C.M.. Protein misfolding, functional amyloid and human disease[J]. Annu. Rev. Biochem., 2006,75:333-366. doi: 10.1146/annurev.biochem.75.101304.123901

    2. [2]

      Dobson C.M.. Protein folding and misfolding[J]. Nature, 2003,426:884-890. doi: 10.1038/nature02261

    3. [3]

      Chapman M.R., Robinson L.S., Pinkner J.S.. Role of Escherichia coli curli operons in directing amyloid fiber formation[J]. Science, 2002,295:851-855. doi: 10.1126/science.1067484

    4. [4]

      Fowler D.M., Koulov A.V., Alory-Jost C.. Functional amyloid formation within mammalian tissue[J]. PLoS Biol., 2006,4e6.  

    5. [5]

      Maji S.K., Perrin M.H., Sawaya M.R.. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules[J]. Science, 2009,325:328-332. doi: 10.1126/science.1173155

    6. [6]

      Wu Z.F., Yang P.. Simple multipurpose surface functionalization by phase transited protein adhesion[J]. Adv. Mate. Interfaces, 2015,21400401. doi: 10.1002/admi.201400401

    7. [7]

      Wang D.H., Ha Y., Gu J.. 2D protein supramolecular nanofilm with exceptionally large area and emergent functions[J]. Adv. Mater., 2016,28:7413-7423. doi: 10.1002/adma.201670239

    8. [8]

      Gao A.T., Wu Q., Wang D.H.. A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization[J]. Adv. Mater., 2016,28:579-587. doi: 10.1002/adma.v28.3

    9. [9]

      Zhong C., Gurry T., Cheng A.A.. Strong underwater adhesives made by self-assembling multi-protein nanofibres[J]. Nat. Nanotechnol., 2014,9:858-866. doi: 10.1038/nnano.2014.199

    10. [10]

      Chen A.Y., Deng Z.T., Billings A.N.. Synthesis and patterning of tunable multiscale materials with engineered cells[J]. Nat. Mater., 2014,13:515-523. doi: 10.1038/nmat3912

    11. [11]

      Nguyen P.Q., Botyanszki Z., Tay P.K., Joshi N.S.. Programmable biofilm-based materials from engineered curli nanofibres[J]. Nat. Commun., 2014,54945. doi: 10.1038/ncomms5945

    12. [12]

      Blanco L.P., Evans M.L., Smith D.R., Badtke M.P., Chapman M.R.. Diversity, biogenesis and function of microbial amyloids[J]. Trends Microbiol., 2012,20:66-73. doi: 10.1016/j.tim.2011.11.005

    13. [13]

      Barnhart M.M., Chapman M.R.. Curli biogenesis and function[J]. Annu. Rev. Microbiol., 2006,60:131-147. doi: 10.1146/annurev.micro.60.080805.142106

    14. [14]

      Greenwald J., Riek R.. Biology of amyloid:structure, function, and regulation[J]. Structure, 2010,18:1244-1260. doi: 10.1016/j.str.2010.08.009

    15. [15]

      Fowler D.M., Koulov A.V., Balch W.E., Kelly J.W.. Functional amyloid-from bacteria to humans[J]. Trends Biochem. Sci., 2007,32:217-224. doi: 10.1016/j.tibs.2007.03.003

    16. [16]

      Zakeri B., Fierer J.O., Celik E.. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J]. Proc. Natl. Acad. Sci. U. S. A., 2012,109:E690-E697. doi: 10.1073/pnas.1115485109

    17. [17]

      Ikegami T., Okada T., Hashimoto M.. Solution structure of the chitinbinding domain of Bacillus circulans WL-12 chitinase A1[J]. J. Biol. Chem., 2000,275:13654-13661. doi: 10.1074/jbc.275.18.13654

    18. [18]

      Hickey C.M., Wilson N.R., Hochstrasser M.. Function and regulation of SUMO proteases[J]. Nat. Rev. Mol. Cell Biol., 2012,13:755-766. doi: 10.1038/nrm3478

    19. [19]

      Sambashivan S., Liu Y.S., Sawaya M.R., Mari G., David E.. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure[J]. Nature, 2005,437:266-269. doi: 10.1038/nature03916

    20. [20]

      Hwang D.S., Waite J.H.. Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3:analysis by circular dichroism[J]. Protein Sci., 2012,21:1689-1695. doi: 10.1002/pro.v21.11

    21. [21]

      Collinson S.K., Parker J.M.R., Hodges R.S., Kay W.W.. Structural predictions of AgfA, the insoluble fimbrial subunit of salmonella thin aggregative fimbriae[J]. J. Mol. Biol., 1999,290:741-756. doi: 10.1006/jmbi.1999.2882

    22. [22]

      Tian P.F., Boomsma W., Wang Y.. Structure of a functional amyloid protein subunit computed using sequence variation[J]. J. Am. Chem. Soc., 2015,137:22-25. doi: 10.1021/ja5093634

    23. [23]

      Wang X., Smith D.R., Jones J.W., Chapman M.R.. In vitro polymerization of a functional Escherichia coli amyloid protein[J]. J. Biol. Chem., 2007,282:3713-3719.  

    24. [24]

      Knowles T.P.J., Buehler M.J.. Nanomechanics of functional and pathological amyloid materials[J]. Nat. Nanotechnol., 2011,6:469-479. doi: 10.1038/nnano.2011.102

    25. [25]

      Knowles T.P.J., Waudby C.A., Devlin G.L.. An analytical solution to the kinetics of breakable filament assembly[J]. Science, 2009,326:1533-1537. doi: 10.1126/science.1178250

    26. [26]

      Relini A., Torrassa S., Ferrando R.. Detection of populations of amyloidlike protofibrils with different physical properties[J]. Biophys. J., 2010,98:1277-1284. doi: 10.1016/j.bpj.2009.11.052

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    5. [5]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    10. [10]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    11. [11]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    12. [12]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    15. [15]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    20. [20]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

Metrics
  • PDF Downloads(3)
  • Abstract views(680)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return