Citation: Xu Jing-Jing, Xiao Chun-Hui, Ding Shu-Jiang. Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction[J]. Chinese Chemical Letters, ;2017, 28(4): 748-754. doi: 10.1016/j.cclet.2016.12.006 shu

Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction

  • Corresponding author: Ding Shu-Jiang, dingsj@xjtu.edu.cn
  • Received Date: 8 August 2016
    Revised Date: 2 November 2016
    Accepted Date: 29 November 2016
    Available Online: 10 April 2016

Figures(5)

  • A highly active nitrogen-doped catalyst with a unique red-blood-cell(RBC)like structure is reported for oxygen reduction reaction(ORR).The catalyst Fe, N-C@carbon-900 was prepared by pyrolysis of the polyaniline(PANI)and polystyrene(PS)composites with adsorption of ferric ion on the shell of sphere structure at 900 ℃.Fe, N-C@carbon-900 with a unique RBC-like structure provides plenty of catalytic sites combining the electrical conductivity of the carbon sphere with the catalytic activity of the nitrogen-doped layer.The four-electron reduction pathway is selected for the catalyst Fe, N-C@carbon-900.The catalyst exhibit the ORR Eonset at 0.87 V(potentials is versus to reversible hydrogen electrode (RHE)), E1/2 at 0.78 V and high diffusion-limiting current density(5.20 mA/cm2).Furthermore, this work indicates that both N and Fe accounted for high activity of the catalyst Fe, N-C@carbon-900 toward the oxygen reduction process.It is concluded that Fe and N exhibit synergistically promotion in the ORR activity for the catalyst Fe, N-C@carbon-900.We also provide a rational design of electrocatalysts with high ORR activity to further clarify the essential ORR sites of heteroatom doped carbon materials for fuel cells and metal-air battery applications.
  • 加载中
    1. [1]

      Wen Z.H., Ci S.Q., Hou Y., Chen J.H.. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst[J]. Angew.Chem.Int.Ed., 2014,53:6496-6500. doi: 10.1002/anie.201402574

    2. [2]

      Shao Y.Y., Park S., Xiao J.. Electrocatalysts for nonaqueous lithium-air batteries:status, challenges, and perspective[J]. ACS Catal., 2012,2:844-857. doi: 10.1021/cs300036v

    3. [3]

      Nie Y., Li L., Wei Z.D.. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chem.Soc.Rev., 2015,44:2168-2201. doi: 10.1039/C4CS00484A

    4. [4]

      Bing Y.H., Liu H.S., Zhang L., Ghosh D., Zhang J.J.. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chem.Soc.Rev., 2010,39:2184-2202. doi: 10.1039/b912552c

    5. [5]

      Yu X.W., Ye S.Y.. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC:part Ⅰ.Physico-chemical and electronic interaction between Pt and carbon support and activity enhancement of Pt/C catalyst[J]. J.Power Sources, 2007,172:133-144. doi: 10.1016/j.jpowsour.2007.07.049

    6. [6]

      Wu G., More K.L., Johnston C.M., Zelenay P.. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332:443-447. doi: 10.1126/science.1200832

    7. [7]

      Steele B.C.H., Heinzel A.. Materials for fuel-cell technologies[J]. Nature, 2001,414:345-352. doi: 10.1038/35104620

    8. [8]

      Birry L., Zagal J.H., Dodelet J.P.. Does CO poison Fe-based catalysts for ORR[J]. Electrochem.Commun., 2010,12:628-631. doi: 10.1016/j.elecom.2010.02.016

    9. [9]

      Gasteiger H.A., Kocha S.S., Sompalli B., Wagner F.T.. Activity benchmarks and requirements for Pt Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl.Catal.B, 2005,56:9-35. doi: 10.1016/j.apcatb.2004.06.021

    10. [10]

      Debe M.K.. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012,486:43-51. doi: 10.1038/nature11115

    11. [11]

      Collman J.P., Brauman J.I., Halbert T.R., Suslick K.S.. Nature of O2 and CO binding to metalloporphyrins and heme proteins[J]. Proc.Natl.Acad.Sci.U.S.A., 1976,73:3333-3337. doi: 10.1073/pnas.73.10.3333

    12. [12]

      Song S.Q., Liang Y.R., Li Z.H.. Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions[J]. Appl.Catal.B, 2010,98:132-137. doi: 10.1016/j.apcatb.2010.05.021

    13. [13]

      Song S.Q., Yin S.B., Li Z.H.. Effect of pore diameter of wormholelike mesoporous carbon supports on the activity of Pt nanoparticles towards hydrogen electrooxidation[J]. J.Power Sources, 2010,195:1946-1949. doi: 10.1016/j.jpowsour.2009.10.009

    14. [14]

      Chen K.Y., Huang X.B., Wan C.Y., Liu H.. Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes[J]. Chem.Commun., 2015,51:7891-7894. doi: 10.1039/C5CC02028J

    15. [15]

      Tang J., Liu J., Li C.L.. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew.Chem.Int.Ed., 2015,54:588-593.  

    16. [16]

      Wei J., Liang Y., Zhang X.Y.. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts[J]. Nanoscale, 2015,7:6247-6254. doi: 10.1039/C5NR00331H

    17. [17]

      Wan K., Long G.F., Liu M.Y.. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction[J]. Appl.Catal.B, 2015,165:566-571. doi: 10.1016/j.apcatb.2014.10.054

    18. [18]

      Wang R.F., Wang H., Zhou T.b.. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction[J]. J. Power Sources, 2015,274:741-747. doi: 10.1016/j.jpowsour.2014.10.049

    19. [19]

      Rodríguez-Reinoso F.. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998,36:159-175. doi: 10.1016/S0008-6223(97)00173-5

    20. [20]

      Calvillo L., Lázaro M., García-Bordejé E.. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells[J]. J.Power Sources, 2007,169:59-64. doi: 10.1016/j.jpowsour.2007.01.042

    21. [21]

      Dai L.M., Xue Y.H., Qu L.T., Choi H.J., Baek J.B.. Metal-free catalysts for oxygen reduction reaction[J]. Chem.Rev., 2015,115:4823-4892. doi: 10.1021/cr5003563

    22. [22]

      Zhao Z.H., Li M.T., Zhang L.P., Dai L.M., Xia Z.H.. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries[J]. Adv.Mater., 2015,27:6834-6840. doi: 10.1002/adma.201503211

    23. [23]

      Duan J.J., Chen S., Jaroniec M., Qiao S.Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catal., 2015,5:5207-5234. doi: 10.1021/acscatal.5b00991

    24. [24]

      Hao L., Zhang S.S., Liu R.J.. Electrocatalysts:bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction(Adv.Mater.20/2015)[J]. Adv.Mater., 2015,273189. doi: 10.1002/adma.201570138

    25. [25]

      Yang J., Sun H.Y., Liang H.Y.. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and graphene[J]. Adv.Mater., 2016,28:4606-4613. doi: 10.1002/adma.v28.23

    26. [26]

      Gong K.P., Du F., Xia Z.H., Durstock M., Dai L.M.. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323:760-764. doi: 10.1126/science.1168049

    27. [27]

      Proietti E., Jaouen F., Lefèvre M.. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nat. Commun., 2011,2416. doi: 10.1038/ncomms1427

    28. [28]

      Yang W.X., Liu X.J., Yue X.Y., Jia J.B., Guo S.J.. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. J. Am.Chem.Soc., 2015,137:1436-1439. doi: 10.1021/ja5129132

    29. [29]

      Ding W., Li L., Xiong K.. Shape fixing via salt recrystallization:a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. J.Am.Chem.Soc., 2015,137:5414-5420. doi: 10.1021/jacs.5b00292

    30. [30]

      Hu Y., Jensen J.O., Zhang W.. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angew.Chem.Int. Ed., 2014,53:3675-3679. doi: 10.1002/anie.v53.14

    31. [31]

      Wang L., Ambrosi A., Pumera M.. Metal-free catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities[J]. Angew.Chem.Int.Ed., 2013,52:13818-13821. doi: 10.1002/anie.201309171

    32. [32]

      Wang Q., Zhou Z.Y., Lai Y.J.. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing[J]. J.Am.Chem.Soc., 2014,136:10882-10885. doi: 10.1021/ja505777v

    33. [33]

      Liang Y.Y., Li Y.G., Wang H.L.. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat.Mater., 2011,10:780-786. doi: 10.1038/nmat3087

    34. [34]

      Yang M., Yao X.X., Wang G., Ding H.J.. A simple method to synthesize sea urchin-like polyaniline hollow spheres[J]. Colloids Surf.A, 2008,324:113-116. doi: 10.1016/j.colsurfa.2008.04.004

    35. [35]

      Meng Z.K., Wang Q., Qu X.Z.. Papillae mimetic hairy composite spheres towards lotus leaf effect coatings[J]. Polymer, 2011,52:597-601. doi: 10.1016/j.polymer.2010.12.020

    36. [36]

      Byun H.S., Burford R.P., Fane A.G.. Sulfonation of cross-linked asymmetric membranes based on polystyrene and divinylbenzene[J]. Appl.Polym.Sci., 1994,52:825-835. doi: 10.1002/app.1994.070520612

    37. [37]

      Ozer O., Ince A., Karagoz B., Bicak N.. Crosslinked PS-DVB microspheres with sulfonated polystyrene brushes as new generation of ion exchange resins[J]. Desalination, 2013,309:141-147. doi: 10.1016/j.desal.2012.09.024

    38. [38]

      Yang M., Ma J., Niu Z.W.. Synthesis of spheres with complex structures using hollow latex cages as templates[J]. Adv.Funct.Mater., 2005,15:1523-1528. doi: 10.1002/(ISSN)1616-3028

    39. [39]

      Ferrari A.C., Meyer J.C., Scardaci V.. Raman spectrum of graphene and graphene layers[J]. Phys.Rev.Lett., 2006,97187401. doi: 10.1103/PhysRevLett.97.187401

    40. [40]

      Dhavale V.M., Gaikwad S.S., George L., Devi R.N., Kurungot S.. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages:efficient and stable water-to-dioxygenelectrocatalysts[J]. Nanoscale, 2014,6:13179-13187. doi: 10.1039/C4NR03578J

    41. [41]

      Singh S.K., Dhavale V.M., Kurungot S.. Surface-tuned Co3O4 nanoparticles dispersed on nitrogen-doped graphene as an efficient cathode electrocatalyst for mechanical rechargeable zinc-air battery application[J]. ACS Appl.Mater. Interfaces, 2015,7:21138-21149. doi: 10.1021/acsami.5b04865

    42. [42]

      Bahlawane N., Ngamou P.H.T., Vannier V.. Tailoring the properties and the reactivity of the spinel cobalt oxide[J]. Phys.Chem.Chem.Phys., 2009,11:9224-9232. doi: 10.1039/b910707j

    43. [43]

      Xiao J.W., Kuang Q., Yang S.H.. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction[J]. Sci.Rep., 2013,32300. doi: 10.1038/srep02300

    44. [44]

      Deng D.H., Yu L., Pan X.L.. Size effect of graphene on electrocatalytic activation of oxygen[J]. Chem.Commun., 2011,47:10016-10018. doi: 10.1039/c1cc13033a

    45. [45]

      Yuan W.J., Zhou Y., Li Y.R.. The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet[J]. Sci.Rep., 2013,32248. doi: 10.1038/srep02248

    46. [46]

      Guo Q.X., Xie Y., Wang X.J.. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chem.Phys.Lett., 2003,380:84-87. doi: 10.1016/j.cplett.2003.09.009

    47. [47]

      Liu W.J., Tian K., He Y.R., Jiang H., Yu H.Q.. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environ.Sci. Technol., 2014,48:13951-13959. doi: 10.1021/es504184c

    48. [48]

      Zheng Y., Jiao Y., Ge L., Jaroniec M., Qiao S.Z.. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angew.Chem.Int.Ed., 2013,125:3192-3198. doi: 10.1002/ange.201209548

    49. [49]

      Su Y.H., Zhu Y.H., Jiang H.L.. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2014,6:15080-15089. doi: 10.1039/C4NR04357J

    50. [50]

      Zhao Y., Watanabe K., Hashimoto K.. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer[J]. J.Am.Chem. Soc., 2012,134:19528-19531. doi: 10.1021/ja3085934

    51. [51]

      Yang L.J., Jiang S.J., Zhao Y.. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angew.Chem.Int.Ed., 2011,123:7270-7273. doi: 10.1002/ange.v123.31

    52. [52]

      Yang Z., Yao Z., Li G.F.. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012,6:205-211. doi: 10.1021/nn203393d

    53. [53]

      Zhao Y., Yang L.J., Chen S.. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes[J]. J.Am.Chem.Soc., 2013,135:1201-1204. doi: 10.1021/ja310566z

  • 加载中
    1. [1]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    2. [2]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    3. [3]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    4. [4]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    5. [5]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    6. [6]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    9. [9]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    10. [10]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    11. [11]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    12. [12]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    13. [13]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    14. [14]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    15. [15]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    16. [16]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    17. [17]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    18. [18]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    19. [19]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    20. [20]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

Metrics
  • PDF Downloads(1)
  • Abstract views(542)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return