Citation: Liu Yu, Xun Xiao-Hong, Yi Jian-Ming, Xiang Yang, Hua Jie. Discovery of lung squamous carcinoma biomarkers by profiling the plasma peptide with LC/MS/MS[J]. Chinese Chemical Letters, ;2017, 28(5): 1093-1098. doi: 10.1016/j.cclet.2016.11.026 shu

Discovery of lung squamous carcinoma biomarkers by profiling the plasma peptide with LC/MS/MS

  • Corresponding author: Hua Jie, huajie663@163.com
  • Received Date: 31 July 2016
    Revised Date: 14 October 2016
    Accepted Date: 28 October 2016
    Available Online: 27 May 2016

Figures(2)

  • Biomarkers can be used for the screening and clinical diagnosis of cancer, and peptidomics approach has been proven successful in the research of biomarkers. To develop better peptidomic technologies for fast, accurate, and reliable detection of peptides biomarkers for lung cancer, we have improved the procedures of blood collection to minimize the degradation of the blood proteins and optimize the extraction of peptidome peptides from plasma samples based on acetonitrile precipitation associated with size exclusion chromatography (SEC). Studies show that squamous cell carcinomas are found to express CAGE1, SPAT9 and TEX28 genes at significantly higher rates, and the results suggest that as tumors progress, the level of CAGE1, SPAT9 and TEX28 genes are likely to increase and lead to immunization. This suggests a potentially important therapeutic method for cancer testis-based cancer vaccines.
  • 加载中
    1. [1]

      C.A. Granville, P.A. Dennis. An overview of lung cancer genomics and proteomics[J]. Am. J. Respir. Cell Mol. Biol., 2005,32:169-176. doi: 10.1165/rcmb.F290

    2. [2]

      H.Y. Wu, Y.G. Goan, Y.H. Chang. Qualification and verification of serological biomarker candidates for lung adenocarcinoma by targeted mass spectrometry[J]. J. Proteome Res., 2015,14:3039-3050. doi: 10.1021/pr501195t

    3. [3]

      S.K. Arya, S. Bhansali. Lung cancer and its early detection using biomarkerbased biosensors[J]. Chem. Rev., 2011,111:6783-6809. doi: 10.1021/cr100420s

    4. [4]

      I.E. Tothill. Biosensors for cancer markers diagnosis[J]. Semin. Cell Dev. Biol., 2009,20:55-62. doi: 10.1016/j.semcdb.2009.01.015

    5. [5]

      A.K. Greenberg, M.S. Lee. Biomarkers for lung cancer:clinical uses[J]. Curr. Opin. Pulm. Med., 2007,13:249-255. doi: 10.1097/MCP.0b013e32819f8f06

    6. [6]

      M.A. Alm El-Din, G. Farouk, H. Nagy, A. Abd Elzaher, G.H. Abo El-Magd. Cytokeratin-19 fragments, nucleosomes and neuron-specific enolase as early measures of chemotherapy response in non-small cell lung cancer[J]. Int. J. Biol. Markers, 2012,27:39-46. doi: 10.5301/JBM.2011.8738

    7. [7]

      P. Tantipaiboonwong, S. Sinchaikul, S. Sriyam, S. Phutrakul, S.T. Chen. Different techniques for urinary protein analysis of normal and lung cancer patients[J]. Proteomics, 2005,5:1140-1149. doi: 10.1002/(ISSN)1615-9861

    8. [8]

      H.J. Sung, J.Y. Cho. Biomarkers for the lung cancer diagnosis and their advances in proteomics[J]. BMB Rep., 2008,41:615-625. doi: 10.5483/BMBRep.2008.41.9.615

    9. [9]

      C. Brambilla, F. Fievet, M. Jeanmart. Early detection of lung cancer:role of biomarkers[J]. Eur. Respir. J., 2003,39(Suppl):36s-44s.

    10. [10]

      E.F. Patz Jr., M.J. Campa, E.B. Gottlin. Panel of serum biomarkers for the diagnosis of lung cancer[J]. J. Clin. Oncol., 2007,25:5578-5583. doi: 10.1200/JCO.2007.13.5392

    11. [11]

      P. Verhaert, S. Uttenweiler-Joseph, M. de Vries. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry:an elegant tool for peptidomics[J]. Proteomics, 2001,1:118-131. doi: 10.1002/(ISSN)1615-9861

    12. [12]

      K. Sasaki, K. Sato, Y. Akiyama. Peptidomics-based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines[J]. Cancer Res., 2002,62:4894-4898.

    13. [13]

      G. Menschaert, T.T.M. Vandekerckhove, G. Baggerman. Peptidomics coming of age:a review of contributions from a bioinformatics angle[J]. J. Proteome Res., 2010,9:2051-2061. doi: 10.1021/pr900929m

    14. [14]

      M. Schrader, H. Selle. The process chain for peptidomic biomarker discovery[J]. Dis. Markers, 2006,22:27-37. doi: 10.1155/2006/174849

    15. [15]

      E.F. Petricoin, C. Belluco, R.P. Araujo, L.A. Liotta. The blood peptidome:a higher dimension of information content for cancer biomarker discovery[J]. Nat. Rev. Cancer, 2006,6:961-967. doi: 10.1038/nrc2011

    16. [16]

      J. Villanueva, J. Philip, L. DeNoyer, P. Tempst. Data analysis of assorted serum peptidome profiles[J]. Nat. Protoc., 2007,2:588-602. doi: 10.1038/nprot.2007.57

    17. [17]

      J. Villanueva, A. Nazarian, K. Lawlor. A sequence-specific exopeptidase activity test (SSEAT) for functional biomarker discovery[J]. Mol. Cell. Proteomics, 2008,7:509-518.

    18. [18]

      Z. Zhang, R.C. Bast Jr., Y.H. Yu. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer[J]. Cancer Res., 2004,64:5882-5890. doi: 10.1158/0008-5472.CAN-04-0746

    19. [19]

      Y.F. Shen, T. Liu, N. Toli c. Strategy for degradomic-peptidomic analysis of human blood plasma[J]. J. Proteome Res., 2010,9:2339-2346. doi: 10.1021/pr901083m

    20. [20]

      N.L. Anderson, N.G. Anderson, T.W. Pearson. A human proteome detection and quantitation project[J]. Mol. Cell. Proteomics, 2009,8:883-886. doi: 10.1074/mcp.R800015-MCP200

    21. [21]

      A. Zougman, B. Pilch, A. Podtelejnikov. Integrated analysis of the cerebrospinal fluid peptidome and proteome[J]. J. Proteome Res., 2008,7:386-399. doi: 10.1021/pr070501k

    22. [22]

      J. Villanueva, J. Philip, D. Entenberg. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry[J]. Anal. Chem., 2004,76:1560-1570. doi: 10.1021/ac0352171

    23. [23]

      O. Chertov, A. Biragyn, L.W. Kwak. Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry[J]. Proteomics, 2004,4:1195-1203. doi: 10.1002/(ISSN)1615-9861

    24. [24]

      M.P.A. Ebert, D.Niemeyer , S.O. Deininger. Identification and confirmation of increased fibrinopeptide a serum protein levels in gastric cancer sera by magnet bead assisted MALDI-TOF mass spectrometry[J]. J. Proteome Res., 2006,5:2152-2158. doi: 10.1021/pr060011c

    25. [25]

      E. Gianazza, V. Mainini, G. Castoldi. Different expression of fibrinopeptide A and related fragments in serum of type 1 diabetic patients with nephropathy[J]. J. Proteomics, 2010,73:593-601. doi: 10.1016/j.jprot.2009.07.006

    26. [26]

      F. Zito, F. Drummond, S.R. Bujac. Epidemiological and genetic associations of activated factor Ⅻ concentration with factor Ⅶ activity, fibrinopeptide A concentration, and risk of coronary heart disease in men[J]. Circulation, 2000,102:2058-2062. doi: 10.1161/01.CIR.102.17.2058

    27. [27]

      K. Ueda, N. Sachiko, S. Takami. A comprehensive peptidome profiling technology for the identification of early detection biomarkers for lung adenocarcinoma[J]. PLoS One, 2011,6e18567. doi: 10.1371/journal.pone.0018567

    28. [28]

      R.R. Subramanian, S.C. Masters, H.Y. Zhang, H.A. Fu. Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis[J]. Exp. Cell Res., 2001,271:142-151. doi: 10.1006/excr.2001.5376

    29. [29]

      S. Basu, N.F. Totty, M.S. Irwin, M. Sudol, J. Downward. Akt phosphorylates the Yes-associated protein YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis[J]. Mol. Cell, 2003,11:11-23. doi: 10.1016/S1097-2765(02)00776-1

    30. [30]

      S.M. Troyanovsky, R.E. Leube, W.W. Franke. Characterization of the human gene encoding cytokeratin 17 and its expression pattern[J]. Eur. J. Cell Biol., 1992,59:127-137.

    31. [31]

      C. Cataisson, R. Ohman, G. Patel. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis[J]. Cancer Res., 2009,69:319-328. doi: 10.1158/0008-5472.CAN-08-2490

    32. [32]

      M. van de Rijn, C.M. Perou, R. Tibshirani. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome[J]. Am. J. Pathol., 2002,161:1991-1996. doi: 10.1016/S0002-9440(10)64476-8

    33. [33]

      M. Sarbia, F. Fritze, H. Geddert, K. Gellert. Differentiation between pancreaticobiliary and upper gastrointestinal adenocarcinomas:is analysis of cytokeratin 17 expression helpful[J]. Am. J. Clin. Pathol., 2007,128:255-259. doi: 10.1309/EEML5CH79PWD0R2D

    34. [34]

      N. Okuyama, Y. Ide, M. Nakano. Fucosylated haptoglobin is a novel marker for pancreatic cancer:a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation[J]. Int. J. Cancer, 2006,118:2803-2808. doi: 10.1002/(ISSN)1097-0215

    35. [35]

      S.J. Yoon, S.Y. Park, P.C. Pang. N-Glycosylation status of β-haptoglobin in sera of patients with prostate cancer vs benign prostate diseases[J]. Int. J. Oncol., 2010,36:193-203.  

    36. [36]

      A. Bharti, P.C. Ma, G. Maulik. Haptoglobin α-subunit and hepatocyte growth factor can potentially serve as serum tumor biomarkers in small cell lung cancer[J]. Anticancer Res., 2004,24:1031-1038.  

    37. [37]

      L.F.M. Hoagland, M.J. Campa, E.B. Gottlin, J.E. Herndon, E.F. Patz Jr. Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer[J]. Cancer, 2007,110:2260-2268. doi: 10.1002/(ISSN)1097-0142

    38. [38]

      M. Guergova-Kuras, I. Kurucz, W. Hempel. Discovery of lung cancer biomarkers by profiling the plasma proteome with monoclonal antibody libraries[J]. Mol. Cell. Proteomics, 2011,10:M111-010298.  

    39. [39]

      S. Park, Y. Lim, D. Lee. Identification and characterization of a novel cancer/testis antigen gene CAGE-1[J]. Biochim. Biophys. Acta, 2003,1625:173-182. doi: 10.1016/S0167-4781(02)00620-6

    40. [40]

      Y. Liu, Y. Geng, K.Z. Li. Comparative proteomic analysis of the function and network mechanisms of MASPIN in human lung cells[J]. Exp. Ther. Med., 2012,3:470-474.  

    41. [41]

      L.J. Cheng, J.M. Li, J. Chen. NYD-SP16, a novel gene associated with spermatogenesis of human testis[J]. Biol. Reprod., 2003,68:190-198. doi: 10.1095/biolreprod.102.004242

    42. [42]

      R. Metlapally, M. Michaelides, A. Bulusu. Evaluation of the x-linked highgrade myopia locus (MYP1) with cone dysfunction and color vision deficiencies[J]. Invest. Ophthalmol. Vis. Sci., 2009,50:1552-1558. doi: 10.1167/iovs.08-2455

    43. [43]

      H. Ueyama, R. Torii, S. Tanabe, S. Oda, S. Yamade. An insertion/deletion TEX28 polymorphism and its application to analysis of red/green visual pigment gene arrays[J]. J. Hum. Genet., 2004,49:548-557. doi: 10.1007/s10038-004-0189-5

    44. [44]

      O.L. Caballero, Y.T. Chen. Cancer/testis (CT) antigens:potential targets for immunotherapy[J]. Cancer Sci., 2009,100:2014-2021. doi: 10.1111/cas.2009.100.issue-11

    45. [45]

      O. Hofmann, O.L. Caballero, B.J. Stevenson. Genome-wide analysis of cancer/testis gene expression[J]. Proc. Natl. Acad. Sci. U. S. A., 2008,105:20422-20427. doi: 10.1073/pnas.0810777105

    46. [46]

      M.J. Scanlan, A.O. Gure, A.A. Jungbluth, L.J. Old, Y.T. Chen. Cancer/testis antigens:an expanding family of targets for cancer immunotherapy[J]. Immunol. Rev., 2002,188:22-32. doi: 10.1034/j.1600-065X.2002.18803.x

    47. [47]

      A.J.W. Zendman, D.J. Ruiter, G.N.P. Van Muijen. Cancer/testis-associated genes:identification, expression profile, and putative function[J]. J. Cell. Physiol., 2003,194:272-288. doi: 10.1002/(ISSN)1097-4652

    48. [48]

      B. Bodey. Cancer-testis antigens:promising targets for antigen directed antineoplastic immunotherapy[J]. Exp. Opin. Biol. Ther., 2002,2:577-584. doi: 10.1517/14712598.2.6.577

    49. [49]

      Q.Y. Chen, H. Jackson, P. Parente. Immunodominant CD4+ responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101:9363-9368. doi: 10.1073/pnas.0403271101

    50. [50]

      I.D. Davis, W.S. Chen, H. Jackson. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibodyand CD4+ and CD8+ T cell responses in humans[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101:10697-10702. doi: 10.1073/pnas.0403572101

    51. [51]

      C. Lurquin, B. Lethé, E. De Plaen. Contrasting frequencies of antitumor and anti-vaccine Tcells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen[J]. J. Exp. Med., 2005,201:249-257. doi: 10.1084/jem.20041378

    52. [52]

      C. Germeau, W.B. Ma, F. Schiavetti. High frequency of antitumor Tcells in the blood of melanoma patients before and after vaccination with tumor antigens[J]. J. Exp. Med., 2005,201:241-248. doi: 10.1084/jem.20041379

  • 加载中
    1. [1]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    2. [2]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    3. [3]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    4. [4]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    5. [5]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    6. [6]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    7. [7]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    8. [8]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    9. [9]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    10. [10]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    11. [11]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    12. [12]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    13. [13]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    14. [14]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    15. [15]

      Huijiao FuPeiqin LiangQianwen ChenYan WangGuang LiXuzi CaiShengtao WangKun ChenShengying ShiZhiqiang YuXuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241

    16. [16]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    17. [17]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    18. [18]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    19. [19]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    20. [20]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

Metrics
  • PDF Downloads(1)
  • Abstract views(627)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return