Citation: Cai Li-Hai, Qi Zhi-Guo, Xu Jun, Guo Bao-Hua, Huang Zhong-Yao. Thermo-oxidative degradation of Nylon 1010 films: Colorimetric evaluation and its correlation with material properties[J]. Chinese Chemical Letters, ;2017, 28(5): 949-954. doi: 10.1016/j.cclet.2016.11.017 shu

Thermo-oxidative degradation of Nylon 1010 films: Colorimetric evaluation and its correlation with material properties

  • Corresponding author: Guo Bao-Hua, bhguo@mail.tsinghua.edu.cn
  • 1 These authors contributed equally to this work
  • Received Date: 14 September 2016
    Revised Date: 31 October 2016
    Accepted Date: 4 November 2016
    Available Online: 18 May 2016

Figures(10)

  • The thermo-oxidative aging behaviors of Nylon 1010 films were studied by various analytical methods, such as measuring the chromaticity, relative viscosity, carbonyl index, UV absorbance at 280 nm and elongation at break of the aged films. The thermo-oxidative aging plots of the results obtained via these various methods at different temperatures are subjected to the time-temperature superposition analysis, which are found to be well superposed. The b* values are used as X axis and the other results, i.e., relative viscosity, carbonyl index, UV absorbance at 280 nm and elongation at break, are used as Y axis, respectively. The relationship between the b* values and the other results is obtained, from which we can derive the changes of physical and chemical properties at different b* values. Since the b* values can be quickly determined by using a portable spectrophotometer, the on-line evaluation of the thermo-oxidative aging of Nylon 1010 can be realized.
  • 加载中
    1. [1]

      Yang X.Z., Hu S.R., Lv Y.F., Zhu S.N., Li X.K.. The structure of Nylon 1010[J]. Polym. Commun., 1985:202-206.

    2. [2]

      Lv Y.F., Yang X.Z., Zhu S.N., Li X.K.. Infrared spectra of Nylon 1010[J]. Acta Chim. Sin., 1983(41):525-533.

    3. [3]

      Fu S.R., Wei Y.X.. Studies of structural reorganization in Nylon 1010 during heating scanning[J]. J. Therm. Anal., 1990(36):999-1007.  

    4. [4]

      Cai L.H., Zhang C., Guo B.H., Xu J., Huang Z.Y.. Stress relaxation behavior of Nylon 1010[J]. Acta Polym. Sin., 2016:382-390.

    5. [5]

      Dong W.F., Gijsman P.. Influence of temperature on the thermo-oxidative degradation of polyamide 6 films[J]. Polym. Degrad. Stabil., 2010(95):1054-1062.  

    6. [6]

      Kiliaris P., Papaspyrides C.D., Pfaendner R.. Influence of accelerated aging on clay-reinforced polyamide 6[J]. Polym. Degrad. Stabil., 2009(94):389-396.  

    7. [7]

      Shu Y., Ye L., Yang T.. Study on the long-term thermal-oxidative aging behavior of polyamide 6[J]. J. Appl. Polym. Sci., 2008(110):945-957.  

    8. [8]

      Zhu N., Gong H., Han W.. Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N, N', N"-trimesoyltricaprolactam as a multifunctional activator[J]. Chin. Chem. Lett., 2015(26):1389-1392.  

    9. [9]

      El-Mazry C., Hassine M.B., Correc O., Colin X.. Thermal oxidation kinetics of additive free polyamide 6-6[J]. Polym. Degrad. Stabil., 2013(98):22-36.  

    10. [10]

      Bernstein R., Gillen K.T.. Nylon 6.6 accelerating aging studies:Ⅱ. Long-term thermal-oxidative and hydrolysis results[J]. Polym. Degrad. Stabil., 2010(95):1471-1479.  

    11. [11]

      Cerruti P., Carfagna C.. Thermal-oxidative degradation of polyamide 6, 6 containing metal salts[J]. Polym. Degrad. Stabil., 2010(95):2405-2412.  

    12. [12]

      Gröning M., Hakkarainen M.. Hakkarainen, Headspace solid-phase microextraction with gas chromatography/mass spectrometry reveals a correlation between the degradation product pattern and changes in the mechanical properties during the thermooxidation of in-plant recycled polyamide 6, 6[J]. J. Appl. Polym. Sci., 2002(86):3396-3407.  

    13. [13]

      Jia F., Mao J.L., Yang X.Y., Ma Y., Yao C.. Thermal, physical and mechanical properties of hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers[J]. Chin. Chem. Lett., 2013(24):654-658.  

    14. [14]

      Richaud E., Diogo O.O., Fayolle B.. Review:auto-oxidation of aliphatic polyamides[J]. Polym. Degrad. Stabil., 2013(98):1929-1939.  

    15. [15]

      Bernstein R., Derzon D.K., Gillen K.T.. Nylon 6.6 accelerated aging studies:thermal-oxidative degradation and its interaction with hydrolysis[J]. Polym. Degrad. Stabil., 2005(88):480-488.  

    16. [16]

      Lánská B.. Stabilization of polyamides-Ⅰ. The efficiency of antioxidants in polyamide 6[J]. Polym. Degrad. Stabil., 1996(53):89-98.  

    17. [17]

      Do C.H., Pearce E.M., Bulkin B.J., Reimschuessel H.K.. FT-IR spectroscopic study on the thermal and thermal oxidative degradation of nylons[J]. J. Polym. Sci. A Polym. Chem., 1987(25):2409-2424.  

    18. [18]

      Okamba O., Diogo -, Richaud E., Verdu J.. Investigation of polyamide 11 embrittlement during oxidative degradation[J]. Polymer, 2016(82):49-56.  

    19. [19]

      Li R.F., Hu X.Z.. Study on discoloration mechanism of polyamide 6 during thermo-oxidative degradation[J]. Polym. Degrad. Stabil., 1998(62):523-528.  

    20. [20]

      Gröning M., Hakkarainen M.. Headspace solid-phase microextraction-a tool for new insights into the long-term thermo-oxidation mechanism of polyamide 6.6[J]. J. Chromatogr. A, 2001(932):1-11.  

    21. [21]

      Karstens T., Rossbach V.. Thermo-oxidative degradation of polyamide 6 and polyamide 6, 6. Structure of UV/VIS-active chromophores[J]. Makromol. Chem., 1990(191):757-771.  

    22. [22]

      Karstens T., Rossbach V.. Thermo-oxidative degradation of polyamide 6 and 6, 6 Kinetics of the formation and inhibition of UV/VIS-active chromophores[J]. Makromol. Chem., 1989(190):3033-3053.  

    23. [23]

      Hamza A.A., El-Tonsy M.M., Fouda I.M., El-Said A.M.. Colorimetric evaluation of thermooxidative degradation of Nylon 6 fibers[J]. J. Appl. Polym. Sci., 1995(57):265-270.  

    24. [24]

      Eriksson P.A., Boydell P., Eriksson K., Månson J.A.E., Albertsson A.C.. Albertsson, Effect of thermal-oxidative aging on mechanical chemical, and thermal properties of recycled polyamide 66[J]. J. Appl. Polym. Sci., 1997(65):1619-1630.  

    25. [25]

      Badoni V.N., Srivastava D., Mathur G.N.. Thermo-oxidative degradation and stabilization of Nylon-6 films:structural changes and its correlation with properties-Ⅱ[J]. J. Polym. Mater., 1996(13):279-283.  

    26. [26]

      M. Tkalcic, J. F. Tasic, Color spaces: perceptual, historical and applicational background, Proceedings of IEEE Region 8 EUROCON 2003, IEEE, Ljubljana, Slovenia, 2003, pp. 304-308.

    27. [27]

      Tang L., Sallet D., Lemaire J.. Photochemistry of polyundecanamides. 1. Mechanisms of photooxidation at short and long wavelengths[J]. Macromolecules, 1982(15):1432-1437.  

    28. [28]

      Marek B., Lerch E.. Photodegradation and yellowing of polyamides[J]. J. Soc. Dyers Color, 1965(81):481-487.  

    29. [29]

      van Gurp M., Palmen J., Lemaire J.. Time-temperature superposition for polymeric blends[J]. J. Rheol. Bull., 1998(65):5-8.  

    30. [30]

      Gillen K.T., Celina M.. The wear-out approach for predicting the remaining lifetime of materials[J]. Polym. Degrad. Stabil., 2000(71):15-30.

  • 加载中
    1. [1]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    2. [2]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    3. [3]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    4. [4]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    5. [5]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    6. [6]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    7. [7]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    8. [8]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    9. [9]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    10. [10]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    11. [11]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    12. [12]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    13. [13]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    16. [16]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    17. [17]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    18. [18]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    19. [19]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(706)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return